Resposta:
y + x + 11º = 180º ( I )
x + 11º = 3x - 39º ( II )
2x = 50º --> x = 25º
y = 180º - 11º - 25º = 144º --> y = 144º
De acordo com os dados do enunciado e realizados concluímos que o valor de x = 25° e y = 144°.
Retas paralelas são aquelas que não se interceptam em nenhum ponto.
Duas retas paralelas cortadas por uma transversal formam ângulos: alternos internos, colaterais internos, alternos externos e colaterais externos.
Os ângulos alternos internos e externos são iguais.
A propriedade dos ângulos colaterais internos e dos colaterais externos é a mesma e é sempre 180°
Os ângulos suplementares são aqueles cuja soma é igual a 180°.
Dados fornecidos pelo enunciado:
[tex]\Large \displaystyle \text { $ \mathsf{ \begin{cases} \sf x = \:?\\ \sf y = \:?\: \end{cases} } $ }[/tex]
Solução:
Os ângulos alternos internos são iguais.
[tex]\Large \displaystyle \text { $ \mathsf{ 3x -39 {}^{\circ} = x + 11 {}^{\circ}} $ }[/tex]
[tex]\Large \displaystyle \text { $ \mathsf{ 3x - x = 11 {}^{\circ} +39 {}^{\circ} } $ }[/tex]
[tex]\Large \displaystyle \text { $ \mathsf{ 2x = 50 {}^{\circ} } $ }[/tex]
[tex]\Large \displaystyle \text { $ \mathsf{ x = \dfrac{ 50 {}^{\circ} }{2} } $ }[/tex]
[tex]\Large \boldsymbol{ \displaystyle \sf x = 25^{\circ} }[/tex]
Sabemos que os ângulos suplementares são dois ângulos que, somados, são iguais a 180°.
[tex]\Large \displaystyle \text { $ \mathsf{ y + x+ 11^{\circ} = 180^{\circ} } $ }[/tex]
[tex]\Large \displaystyle \text { $ \mathsf{ y + 25^{\circ}+ 11^{\circ} = 180^{\circ} } $ }[/tex]
[tex]\Large \displaystyle \text { $ \mathsf{ y + 36^{\circ} = 180^{\circ} } $ }[/tex]
[tex]\Large \displaystyle \text { $ \mathsf{ y = 180^{\circ} - 36^{\circ} } $ }[/tex]
[tex]\Large \boldsymbol{ \displaystyle \sf y = 144^{\circ} }[/tex]
Mais conhecimento acesse:
https://brainly.com.br/tarefa/51283857
https://brainly.com.br/tarefa/33622831
Copyright © 2024 ELIBRARY.TIPS - All rights reserved.
Lista de comentários
Resposta:
y + x + 11º = 180º ( I )
x + 11º = 3x - 39º ( II )
2x = 50º --> x = 25º
y = 180º - 11º - 25º = 144º --> y = 144º
De acordo com os dados do enunciado e realizados concluímos que o valor de x = 25° e y = 144°.
Retas paralelas são aquelas que não se interceptam em nenhum ponto.
Duas retas paralelas cortadas por uma transversal formam ângulos: alternos internos, colaterais internos, alternos externos e colaterais externos.
Os ângulos alternos internos e externos são iguais.
A propriedade dos ângulos colaterais internos e dos colaterais externos é a mesma e é sempre 180°
Os ângulos suplementares são aqueles cuja soma é igual a 180°.
Dados fornecidos pelo enunciado:
[tex]\Large \displaystyle \text { $ \mathsf{ \begin{cases} \sf x = \:?\\ \sf y = \:?\: \end{cases} } $ }[/tex]
Solução:
Os ângulos alternos internos são iguais.
[tex]\Large \displaystyle \text { $ \mathsf{ 3x -39 {}^{\circ} = x + 11 {}^{\circ}} $ }[/tex]
[tex]\Large \displaystyle \text { $ \mathsf{ 3x - x = 11 {}^{\circ} +39 {}^{\circ} } $ }[/tex]
[tex]\Large \displaystyle \text { $ \mathsf{ 2x = 50 {}^{\circ} } $ }[/tex]
[tex]\Large \displaystyle \text { $ \mathsf{ x = \dfrac{ 50 {}^{\circ} }{2} } $ }[/tex]
[tex]\Large \boldsymbol{ \displaystyle \sf x = 25^{\circ} }[/tex]
Sabemos que os ângulos suplementares são dois ângulos que, somados, são iguais a 180°.
[tex]\Large \displaystyle \text { $ \mathsf{ y + x+ 11^{\circ} = 180^{\circ} } $ }[/tex]
[tex]\Large \displaystyle \text { $ \mathsf{ y + 25^{\circ}+ 11^{\circ} = 180^{\circ} } $ }[/tex]
[tex]\Large \displaystyle \text { $ \mathsf{ y + 36^{\circ} = 180^{\circ} } $ }[/tex]
[tex]\Large \displaystyle \text { $ \mathsf{ y = 180^{\circ} - 36^{\circ} } $ }[/tex]
[tex]\Large \boldsymbol{ \displaystyle \sf y = 144^{\circ} }[/tex]
Mais conhecimento acesse:
https://brainly.com.br/tarefa/51283857
https://brainly.com.br/tarefa/33622831