Articles
Register
Sign In
Search
Melizasalhi
@Melizasalhi
May 2019
2
89
Report
Détermine les limites et les asymptotes de courbe representative de f , f(x) = 1 / 1 e^x
calculer f'(x)
montrer que f(-x) + f(x) = 1
Please enter comments
Please enter your name.
Please enter the correct email address.
Agree to
terms and service
You must agree before submitting.
Send
Lista de comentários
scoladan
Verified answer
Bonjour,
f(x) = 1/(1+e^x)
f'(x) = -e^x/(1+e^x)^2
f(-x) + f(x) = 1/(1+e^-x) + 1/(1+e^x)
= [1+e^x + 1+e^-x]/[(1+1/e^x)(1+e^x)]
= [2 + e^x + e^-x]/[2 + e^x + e^-x]
= 1
1 votes
Thanks 0
scoladan
ah oui, j'avais zappé les limites
danielwenin
Verified answer
Pour les asymptotes:
pas d'asymptote verticale car 1 + e^x n'est jamais nul.
limf(x) pour x ---> ∞ = 1/(∞) = 0 => y = 0 asymptote horizontale
limf(x) pour x ---> -∞ = 1/(1 + 1/∞) = 1 => y =1 asymptote horizontale
l'autre parti est correcte
1 votes
Thanks 0
More Questions From This User
See All
Melizasalhi
January 2021 | 0 Respostas
Responda
×
Report "Détermine les limites et les asymptotes de courbe representative de f , f(x) = 1 / 1 e^x calculer f'.... Pergunta de ideia de Melizasalhi"
Your name
Email
Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint
Description
Helpful Links
Sobre nós
Política de Privacidade
Termos e Condições
direito autoral
Contate-Nos
Helpful Social
Get monthly updates
Submit
Copyright © 2024 ELIBRARY.TIPS - All rights reserved.
Lista de comentários
Verified answer
Bonjour,f(x) = 1/(1+e^x)
f'(x) = -e^x/(1+e^x)^2
f(-x) + f(x) = 1/(1+e^-x) + 1/(1+e^x)
= [1+e^x + 1+e^-x]/[(1+1/e^x)(1+e^x)]
= [2 + e^x + e^-x]/[2 + e^x + e^-x]
= 1
Verified answer
Pour les asymptotes:pas d'asymptote verticale car 1 + e^x n'est jamais nul.
limf(x) pour x ---> ∞ = 1/(∞) = 0 => y = 0 asymptote horizontale
limf(x) pour x ---> -∞ = 1/(1 + 1/∞) = 1 => y =1 asymptote horizontale
l'autre parti est correcte