Explicação passo-a-passo:
A)
[tex]2x > 3 \\ x > \frac{2}{3} \\ x > 1.5[/tex]
B)
[tex]8x \geqslant - 5 \\ x \geqslant \frac{ - 5}{8} \\ x \geqslant - 0.625[/tex]
C)
[tex]x - 4 \leqslant 5 \\ x \leqslant 5 + 4 \\ x \leqslant 9[/tex]
D)
[tex] \frac{a}{2} < 7 \\ a < 7 \times 2 \\ a < 14[/tex]
E)
[tex]3z - \frac{1}{2} > \frac{1}{4} \\ 3z > \frac{1}{4} + \frac{1}{2} \\ 3z > \frac{3}{4 } \\ z > \frac{3}{4} \times \frac{1}{3} \\ z > \frac{3}{12} \\ z > 0.25[/tex]
Copyright © 2024 ELIBRARY.TIPS - All rights reserved.
Lista de comentários
Explicação passo-a-passo:
A)
[tex]2x > 3 \\ x > \frac{2}{3} \\ x > 1.5[/tex]
B)
[tex]8x \geqslant - 5 \\ x \geqslant \frac{ - 5}{8} \\ x \geqslant - 0.625[/tex]
C)
[tex]x - 4 \leqslant 5 \\ x \leqslant 5 + 4 \\ x \leqslant 9[/tex]
D)
[tex] \frac{a}{2} < 7 \\ a < 7 \times 2 \\ a < 14[/tex]
E)
[tex]3z - \frac{1}{2} > \frac{1}{4} \\ 3z > \frac{1}{4} + \frac{1}{2} \\ 3z > \frac{3}{4 } \\ z > \frac{3}{4} \times \frac{1}{3} \\ z > \frac{3}{12} \\ z > 0.25[/tex]