Articles
Register
Sign In
Search
enttenten
@enttenten
January 2021
1
66
Report
19 POINTS URGENT
Bonjour qqun peut m'aider svp(avec explication):
Please enter comments
Please enter your name.
Please enter the correct email address.
Agree to
terms and service
You must agree before submitting.
Send
Lista de comentários
anylor
Bonjour
3)
c)
f(x) =(2-x)(x-1) = -x²+3x-2
racine de f(x)
u= 2
v=1
u+v /2 =3/2
f(3/2) = -(3/2)²+(3/2)×3 -2
= 1/4
l'algorithme affiche en sortie
3/2
1/4
( qui sont les coordonnées du sommet de f(x))
d)
x²-8x = x(x-8)
u=0
v=8
(u+v)/2 =8/2=4
f(4) = -16
l'algorithme affiche en sortie
4
-16
4)
cet algorithme calcule les coordonnées du sommet de la parabole
1 votes
Thanks 0
More Questions From This User
See All
enttenten
June 2021 | 0 Respostas
Responda
enttenten
February 2021 | 0 Respostas
Responda
enttenten
February 2021 | 0 Respostas
Responda
enttenten
February 2021 | 0 Respostas
Responda
enttenten
February 2021 | 0 Respostas
Responda
enttenten
February 2021 | 0 Respostas
Responda
enttenten
February 2021 | 0 Respostas
Responda
enttenten
February 2021 | 0 Respostas
Responda
enttenten
February 2021 | 0 Respostas
Responda
enttenten
February 2021 | 0 Respostas
Quelle est la figure destyle svp J'ai franchi le mur des ans.
Responda
×
Report "19 POINTS URGENT Bonjour qqun peut m'aider svp(avec explication):.... Pergunta de ideia de enttenten"
Your name
Email
Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint
Description
Helpful Links
Sobre nós
Política de Privacidade
Termos e Condições
direito autoral
Contate-Nos
Helpful Social
Get monthly updates
Submit
Copyright © 2024 ELIBRARY.TIPS - All rights reserved.
Lista de comentários
3)
c)
f(x) =(2-x)(x-1) = -x²+3x-2
racine de f(x)
u= 2
v=1
u+v /2 =3/2
f(3/2) = -(3/2)²+(3/2)×3 -2
= 1/4
l'algorithme affiche en sortie
3/2
1/4
( qui sont les coordonnées du sommet de f(x))
d)
x²-8x = x(x-8)
u=0
v=8
(u+v)/2 =8/2=4
f(4) = -16
l'algorithme affiche en sortie
4
-16
4)
cet algorithme calcule les coordonnées du sommet de la parabole