Articles
Register
Sign In
Search
Maevaker
@Maevaker
April 2019
1
106
Report
F (x) = (2x - 3)² - 5(x + 5)(-4x + 6)
1. développer f (x).
2. factoriser f (x).
3. déterminer l'image de racine de 2, de 3/2, de 0.
4.
Résoudre les équations : f (x) = - 141; f (x) = 0; f (x) = 58x - 93.
Please enter comments
Please enter your name.
Please enter the correct email address.
Agree to
terms and service
You must agree before submitting.
Send
Lista de comentários
isapaul
Verified answer
Bonsoir
1) développer
f(x) = (2x - 3)² - 5(x+5)( -4x + 6)
f(x) = 4x² - 12x + 9 - (5x+25)(-4x+6)
f(x) = 4x²-12x+9 - ( -20x²+30x-100x+150)
f(x) =4x² - 12x + 9 + 20x² +70x -150
f(x) = 24x² + 58x - 141
2) factoriser
f(x) = (2x - 3)² - (5(x+5)(-2)(2x-3))
f(x) = (2x-3)² - (2x-3)(-10x-50)
f(x) = (2x-3)(2x - 3 +10x + 50)
f(x) = (2x - 3) ( 12x + 47)
3)
f(V2) = 24(V2)² +58(V2) -141
f(V2) = -93 + 58V2
f(3/2) = 0 car 2(3/2) - 3 = 0 d'après forme factorisée de f(x)
f(0) = 24(0)²+58(0)-141 = -141
f(x) = -141 pour x = 0
f(x) = 0 si un produit est nul soit 2x-3 = 0 pour x = 3/2
12x+47 = 0 pour x = -47/12
f(x) = 58x-93 pour x = V2
0 votes
Thanks 3
More Questions From This User
See All
maevaker
June 2021 | 0 Respostas
Responda
Maevaker
April 2019 | 0 Respostas
Responda
Maevaker
April 2019 | 0 Respostas
Responda
Maevaker
April 2019 | 0 Respostas
Responda
×
Report "F (x) = (2x - 3)² - 5(x + 5)(-4x + 6)1. développer f (x).2. factoriser f (x).3. déterminer l'image d.... Pergunta de ideia de Maevaker"
Your name
Email
Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint
Description
Helpful Links
Sobre nós
Política de Privacidade
Termos e Condições
direito autoral
Contate-Nos
Helpful Social
Get monthly updates
Submit
Copyright © 2024 ELIBRARY.TIPS - All rights reserved.
Lista de comentários
Verified answer
Bonsoir1) développer
f(x) = (2x - 3)² - 5(x+5)( -4x + 6)
f(x) = 4x² - 12x + 9 - (5x+25)(-4x+6)
f(x) = 4x²-12x+9 - ( -20x²+30x-100x+150)
f(x) =4x² - 12x + 9 + 20x² +70x -150
f(x) = 24x² + 58x - 141
2) factoriser
f(x) = (2x - 3)² - (5(x+5)(-2)(2x-3))
f(x) = (2x-3)² - (2x-3)(-10x-50)
f(x) = (2x-3)(2x - 3 +10x + 50)
f(x) = (2x - 3) ( 12x + 47)
3)
f(V2) = 24(V2)² +58(V2) -141
f(V2) = -93 + 58V2
f(3/2) = 0 car 2(3/2) - 3 = 0 d'après forme factorisée de f(x)
f(0) = 24(0)²+58(0)-141 = -141
f(x) = -141 pour x = 0
f(x) = 0 si un produit est nul soit 2x-3 = 0 pour x = 3/2
12x+47 = 0 pour x = -47/12
f(x) = 58x-93 pour x = V2