Articles
Register
Sign In
Search
Maths75015
@Maths75015
April 2019
1
57
Report
Aide MAHEMATIQUES Urgent !!!! (3eme)
Résoudre les équations suivantes:
a) x² = 2x - 1
b) 25x² = 20x -4
c) 25x² = 16
Please enter comments
Please enter your name.
Please enter the correct email address.
Agree to
terms and service
You must agree before submitting.
Send
Lista de comentários
nathalienouts
A) x² = 2x - 1
x²-2x+ 1 = 0 identité remarquable (a-b)² = a²-2ab+b²
(x-1)² = 0
donc x-1 = 0
soit x = 1
b) 25x² = 20x -4
(5x)²-20x+2² même identité remarquable que ci dessus
(5x-2)² = 0
donc 5x-2 = 0
soit 5x = 2
soit x = 2/5
c) 25x² = 16
(5x)
²-4² = 0 identité remarquable a²-b² = (a+b)(a-b)
(5x+4)(5x-4) = 0
5x+4 = 0 ou 5x-4 = 0
5x = -4 ou 5x = 4
x = -4/5 ou x = 4/5
0 votes
Thanks 1
nathalienouts
de rien
More Questions From This User
See All
maths75015
June 2021 | 0 Respostas
Responda
maths75015
June 2021 | 0 Respostas
Responda
Maths75015
April 2019 | 0 Respostas
Responda
Maths75015
April 2019 | 0 Respostas
Responda
Maths75015
April 2019 | 0 Respostas
Responda
Maths75015
April 2019 | 0 Respostas
Responda
Maths75015
April 2019 | 0 Respostas
Responda
Maths75015
April 2019 | 0 Respostas
Responda
Maths75015
April 2019 | 0 Respostas
Responda
×
Report "Aide MAHEMATIQUES Urgent !!!! (3eme) Résoudre les équations suivantes: a) x² = 2x - 1 b) 25x² = 20x .... Pergunta de ideia de Maths75015"
Your name
Email
Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint
Description
Helpful Links
Sobre nós
Política de Privacidade
Termos e Condições
direito autoral
Contate-Nos
Helpful Social
Get monthly updates
Submit
Copyright © 2024 ELIBRARY.TIPS - All rights reserved.
Lista de comentários
x²-2x+ 1 = 0 identité remarquable (a-b)² = a²-2ab+b²
(x-1)² = 0
donc x-1 = 0
soit x = 1
b) 25x² = 20x -4
(5x)²-20x+2² même identité remarquable que ci dessus
(5x-2)² = 0
donc 5x-2 = 0
soit 5x = 2
soit x = 2/5
c) 25x² = 16
(5x)²-4² = 0 identité remarquable a²-b² = (a+b)(a-b)
(5x+4)(5x-4) = 0
5x+4 = 0 ou 5x-4 = 0
5x = -4 ou 5x = 4
x = -4/5 ou x = 4/5