marco31
Poid d une feuille format A4 21 cm= 0,21m et 29,7cm= 0,297 m Surface d une feuille 0,21×0,297=0,06237 m² Poid de la feuille 80g/m2×0,06237m²=4,9896g⇒4,99g Poid des quatre feuilles 4,99×4=19,96g Prix d une lettre prioritaire de moins de 20 g pour l année 2017 est 0,85 euro Donc le prix d une lettre est 0,85 euro
Exercice 2
1/ hauteur du cone Utilisation du theoreme de thales AB/AO=BC/OS⇒3,20/(3,20+2,3+2,50)=1/OS 3,20/8=1/OS⇒OS=8×1/3,20=2,5m Donc la hauteur du cone est 2,5 m
2/Volume du sel de cône π×r²×h/3=π×2,5²×2,5/3=π6,25×2,5/3= 16,36m³⇒16m³
3/quel rayon faut il pour prévoir la base
1000=π×r²×6⇒donc on cherche r R²=1000×3/π×6=3000/18,85=159,159 r=√159,159=12,61m
Lista de comentários
21 cm= 0,21m et 29,7cm= 0,297 m
Surface d une feuille
0,21×0,297=0,06237 m²
Poid de la feuille
80g/m2×0,06237m²=4,9896g⇒4,99g
Poid des quatre feuilles
4,99×4=19,96g
Prix d une lettre prioritaire de moins de 20 g pour l année 2017 est 0,85 euro
Donc le prix d une lettre est 0,85 euro
Exercice 2
1/ hauteur du cone
Utilisation du theoreme de thales
AB/AO=BC/OS⇒3,20/(3,20+2,3+2,50)=1/OS
3,20/8=1/OS⇒OS=8×1/3,20=2,5m
Donc la hauteur du cone est 2,5 m
2/Volume du sel de cône
π×r²×h/3=π×2,5²×2,5/3=π6,25×2,5/3= 16,36m³⇒16m³
3/quel rayon faut il pour prévoir la base
1000=π×r²×6⇒donc on cherche r
R²=1000×3/π×6=3000/18,85=159,159
r=√159,159=12,61m