Resposta:
10,1
Explicação passo a passo:
Pra facilitar o cálculo, considere representar os números decimais em forma de frações:
[tex]-0,1=-\dfrac{1}{10}\\\\\\0,001=\dfrac{1}{1000}\\\\\\\dfrac{x^{2}-xy}{y}=\dfrac{\left(-\dfrac{1}{10}\right)^{2}-\left(-\dfrac{1}{10}\right)\cdot \left(\dfrac{1}{1000}\right)}{\dfrac{1}{1000}}=\dfrac{\left(\dfrac{1}{100}\right)-\left(-\dfrac{1}{10000}\right)}{\dfrac{1}{1000}}=\\\\\\\\\dfrac{\dfrac{1}{100}+\dfrac{1}{10000}}{\dfrac{1}{1000}}= \dfrac{\dfrac{100+1}{10000}}{\dfrac{1}{1000}}= \dfrac{\dfrac{101}{10000}}{\dfrac{1}{1000}}= \dfrac{101}{10000}\cdot 1000=\dfrac{101}{10}=10,1[/tex]
Copyright © 2025 ELIBRARY.TIPS - All rights reserved.
Lista de comentários
Verified answer
Resposta:
10,1
Explicação passo a passo:
Pra facilitar o cálculo, considere representar os números decimais em forma de frações:
[tex]-0,1=-\dfrac{1}{10}\\\\\\0,001=\dfrac{1}{1000}\\\\\\\dfrac{x^{2}-xy}{y}=\dfrac{\left(-\dfrac{1}{10}\right)^{2}-\left(-\dfrac{1}{10}\right)\cdot \left(\dfrac{1}{1000}\right)}{\dfrac{1}{1000}}=\dfrac{\left(\dfrac{1}{100}\right)-\left(-\dfrac{1}{10000}\right)}{\dfrac{1}{1000}}=\\\\\\\\\dfrac{\dfrac{1}{100}+\dfrac{1}{10000}}{\dfrac{1}{1000}}= \dfrac{\dfrac{100+1}{10000}}{\dfrac{1}{1000}}= \dfrac{\dfrac{101}{10000}}{\dfrac{1}{1000}}= \dfrac{101}{10000}\cdot 1000=\dfrac{101}{10}=10,1[/tex]