Articles
Register
Sign In
Search
Dannii1
@Dannii1
April 2019
1
128
Report
Besoin d'aide svp c urgent
On propose de résoudre l'équation cosx + sinx = -1 dans l'intervalle [ 0 ; 2\pi ]
1_ Montrer que (cosx + sinx +1)2 = 2(1 + cosx)(1+sinx)
2_ En déduire la résolution de l'équation proposée.
Please enter comments
Please enter your name.
Please enter the correct email address.
Agree to
terms and service
You must agree before submitting.
Send
Lista de comentários
maudmarine
Verified answer
1)
Montrer que (cosx + sinx +1)2 = 2(1 + cosx)(1+sinx)
(cosx + sinx +1)² = 2(1 + cosx)(1+sinx)
(1 + cosx + sinx)² = (1 + cosx + sinx) (1 +cosx + sinx)
= ( (1 + cosx) + sinx ) (cosx + (1 + sinx) )
= (1 + cosx) cosx + (1 + cosx) (1 + sinx) + sinx cosx + sinx (1 + sinx)
2)
En déduire la résolution de l'équation proposée
(1 + cosx) (1 + sinx) = (1 + cosx) cosx + sinx cosx + sinx. (1+sinx)
On a :
(1 + cosx) cosx + sinx cosx + sinx (1 + sinx) = cosx + (cosx)² + sinx cosx + sinx + (sinx)²
= cosx +1 + sinx (1 + cosx)
= (cosx + 1) (sinx + 1)
d'où on a le resultat
(1+cosx +sinx)²=2(cosx+1)(sinx+1)
1 votes
Thanks 2
Dannii1
merci beaucoup
More Questions From This User
See All
Dannii1
June 2021 | 0 Respostas
Responda
Dannii1
June 2021 | 0 Respostas
Responda
Dannii1
June 2021 | 0 Respostas
Responda
Dannii1
June 2021 | 0 Respostas
Responda
Dannii1
April 2019 | 0 Respostas
Responda
Dannii1
April 2019 | 0 Respostas
Responda
Dannii1
April 2019 | 0 Respostas
Responda
Dannii1
April 2019 | 0 Respostas
Responda
×
Report "Besoin d'aide svp c urgentOn propose de résoudre l'équation cosx + sinx = -1 dans l'intervalle [ 0 ;.... Pergunta de ideia de Dannii1"
Your name
Email
Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint
Description
Helpful Links
Sobre nós
Política de Privacidade
Termos e Condições
direito autoral
Contate-Nos
Helpful Social
Get monthly updates
Submit
Copyright © 2025 ELIBRARY.TIPS - All rights reserved.
Lista de comentários
Verified answer
1) Montrer que (cosx + sinx +1)2 = 2(1 + cosx)(1+sinx)(cosx + sinx +1)² = 2(1 + cosx)(1+sinx)(1 + cosx + sinx)² = (1 + cosx + sinx) (1 +cosx + sinx)
= ( (1 + cosx) + sinx ) (cosx + (1 + sinx) )
= (1 + cosx) cosx + (1 + cosx) (1 + sinx) + sinx cosx + sinx (1 + sinx)
2) En déduire la résolution de l'équation proposée
(1 + cosx) (1 + sinx) = (1 + cosx) cosx + sinx cosx + sinx. (1+sinx)
On a :
(1 + cosx) cosx + sinx cosx + sinx (1 + sinx) = cosx + (cosx)² + sinx cosx + sinx + (sinx)²
= cosx +1 + sinx (1 + cosx)
= (cosx + 1) (sinx + 1)
d'où on a le resultat
(1+cosx +sinx)²=2(cosx+1)(sinx+1)