Réponse :
Bjr,
1. z1 = -4
z2 = -4 -4i
z3 = -4i
2.
a) a0 = 0 et b0 = 0 car z0 = 0
b) zn+1 = i zn - 4 = i(an + i bn) - 4 = -bn - 4 + i an
an+1 = -bn - 4
bn+1 = an
c) def f(n):
a=0
b=0
tic=0
print(tic,[a,b])
for i in range(n):
tic=tic+1
c=a
a=-b-4
b=c
J'ai ajouté un petit compteur "tic" pour affichage à la console et range(1,n+1) et range(n) même mécanisme.
>>> f(8)
0 [0, 0]
1 [-4, 0]
2 [-4, -4]
3 [0, -4]
4 [0, 0]
5 [-4, 0]
6 [-4, -4]
7 [0, -4]
8 [0, 0]
On voit un cycle.
B. 1. i Un = i zn - i w = i zn - 2 + 2i = i zn - 4 + 2 + 2i = zn+1 - w = Un+1
2. U1 = i U0
U2 = i U1 = i² U0
Un = U0 (i^n) = (z0 - w) i^n = -w i^n = (2 + 2i) x i^n
3. zn = Un + w = (2 + 2i) x i^n - (2 + 2i) = (2 + 2i) (i^n - 1)
4. a) i² = -1
i^50 = i²^25 = (-1)^25 = -1
i^100 = i²^50 = (-1)^50 = 1
b) z50 = (2 + 2i) (i^50 - 1) = (2 + 2i) (-1 - 1) = -4 - 4i
z100 = (2 + 2i) (i^100 - 1) = (2 + 2i) (1 - 1) = 0
A la console :
>>> f(50)
50 [-4, -4]
>>> f(100)
100 [0, 0]
>>>
Copyright © 2024 ELIBRARY.TIPS - All rights reserved.
Lista de comentários
Réponse :
Bjr,
1. z1 = -4
z2 = -4 -4i
z3 = -4i
2.
a) a0 = 0 et b0 = 0 car z0 = 0
b) zn+1 = i zn - 4 = i(an + i bn) - 4 = -bn - 4 + i an
an+1 = -bn - 4
bn+1 = an
c) def f(n):
a=0
b=0
tic=0
print(tic,[a,b])
for i in range(n):
tic=tic+1
c=a
a=-b-4
b=c
print(tic,[a,b])
J'ai ajouté un petit compteur "tic" pour affichage à la console et range(1,n+1) et range(n) même mécanisme.
>>> f(8)
0 [0, 0]
1 [-4, 0]
2 [-4, -4]
3 [0, -4]
4 [0, 0]
5 [-4, 0]
6 [-4, -4]
7 [0, -4]
8 [0, 0]
On voit un cycle.
B. 1. i Un = i zn - i w = i zn - 2 + 2i = i zn - 4 + 2 + 2i = zn+1 - w = Un+1
2. U1 = i U0
U2 = i U1 = i² U0
Un = U0 (i^n) = (z0 - w) i^n = -w i^n = (2 + 2i) x i^n
3. zn = Un + w = (2 + 2i) x i^n - (2 + 2i) = (2 + 2i) (i^n - 1)
4. a) i² = -1
i^50 = i²^25 = (-1)^25 = -1
i^100 = i²^50 = (-1)^50 = 1
b) z50 = (2 + 2i) (i^50 - 1) = (2 + 2i) (-1 - 1) = -4 - 4i
z100 = (2 + 2i) (i^100 - 1) = (2 + 2i) (1 - 1) = 0
A la console :
>>> f(50)
50 [-4, -4]
>>> f(100)
100 [0, 0]
>>>