Articles
Register
Sign In
Search
Miakttllua
@Miakttllua
July 2022
1
20
Report
bonjour! j'ai essayé plusieurs fois mais je n'arrive pas a resoudre cet exercice! aidez moi svp: montrer que p est fausse en utilisant le raisonnement par negation
p (∀x∈ℚ) [(x²∈ℚ)⇒ (x∈ℚ)]
Please enter comments
Please enter your name.
Please enter the correct email address.
Agree to
terms and service
You must agree before submitting.
Send
Lista de comentários
tomislekik
P Q
Q P P =⇒ Q P Q
P =⇒QP QPQ
=⇒
P Q P ⇐⇒ Q P =⇒ Q Q =⇒ P
PQ = (P)=⇒Q
(∗)
P =⇒ Q
P . . . (∗) Q . . . (∗) ⎡⎣ ⎤⎦
Q P =⇒ Q
P ⇐⇒ Q
P =⇒ Q Q =⇒ P
1. Démontrer une implication ou une équivalence 13
P Q
P ⇐⇒ ··· ⇐⇒ ··· ⇐⇒ Q
P ⇐⇒ Q PQ (P)=⇒Q
P . . . (∗) Q . . . (∗)
⎡⎣ ⎤⎦ Q
P Q ∀x∈R, x2,(x−2)2≥1
P Q
x ∈ R x2,(x−2)2 ≥ 1 x2 ≥ 1 (x−2)2 ≥ 1 ( P ) =⇒ Q
P x2 < 1 Q (x − 2)2 ≥ 1
x2 < 1
−1 < x < 1 −3 < x−2 < −1 9 > (x − 2)2 > 1 (x − 2)2 ≥ 1
R−
x ∈ R x2, (x − 2)2 ≥ 1
0 votes
Thanks 0
Miakttllua
j'ai rien compris
More Questions From This User
See All
Miakttllua
July 2022 | 0 Respostas
Responda
Miakttllua
July 2022 | 0 Respostas
Responda
Miakttllua
March 2022 | 0 Respostas
Responda
×
Report "bonjour! j'ai essayé plusieurs fois mais je n'arrive pas a resoudre cet exercice! aidez moi svp: mon.... Pergunta de ideia de Miakttllua"
Your name
Email
Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint
Description
Helpful Links
Sobre nós
Política de Privacidade
Termos e Condições
direito autoral
Contate-Nos
Helpful Social
Get monthly updates
Submit
Copyright © 2024 ELIBRARY.TIPS - All rights reserved.
Lista de comentários
Q P P =⇒ Q P Q
P =⇒QP QPQ
=⇒
P Q P ⇐⇒ Q P =⇒ Q Q =⇒ P
PQ = (P)=⇒Q
(∗)
P =⇒ Q
P . . . (∗) Q . . . (∗) ⎡⎣ ⎤⎦
Q P =⇒ Q
P ⇐⇒ Q
P =⇒ Q Q =⇒ P
1. Démontrer une implication ou une équivalence 13
P Q
P ⇐⇒ ··· ⇐⇒ ··· ⇐⇒ Q
P ⇐⇒ Q PQ (P)=⇒Q
P . . . (∗) Q . . . (∗)
⎡⎣ ⎤⎦ Q
P Q ∀x∈R, x2,(x−2)2≥1
P Q
x ∈ R x2,(x−2)2 ≥ 1 x2 ≥ 1 (x−2)2 ≥ 1 ( P ) =⇒ Q
P x2 < 1 Q (x − 2)2 ≥ 1
x2 < 1
−1 < x < 1 −3 < x−2 < −1 9 > (x − 2)2 > 1 (x − 2)2 ≥ 1
R−
x ∈ R x2, (x − 2)2 ≥ 1