Bonjour j'ai un petit problème mon prof' m'as donner un DM mais je ne comprend pas.
Exercice 1: Soit (O,I,J) un repère orthonormé. On considère les points A(-3;-2) et C(0;3).
1. Dessiner un repère orthonormé et placer les points A et C.
2. Soit B le milieu du segment [AB]. Calculer les coordonnées de B et le placer sur la figure.
3. Soit E le symétrique de B par rapport à l'origine du repère. Calculer les coordonnées de E et le placer sur la figure.
4. Soit C le cercle de centre B passant par A. Tracer ce cercle sur votre figure.
5. La droite (AE) coupe le cercleC en un point D.
6. Calculer la longueur AC.
7. Justifier la nature du triangle ACD.
8. Soit F(-1;2). Placer le point F.
9. Calculer les longueurs AF et FC.
10. De quelle nature est le triangle AFC? Démontrer le.
Pouvez-vous m'aider pour les calcule.?
Copyright © 2024 ELIBRARY.TIPS - All rights reserved.
Lista de comentários
Bonsoir,
Je pense que tu peux t'en sortir pour les questions concernant les tracages et marquages à faire. Concernant les calculs :
2. B= [ (Xa+Xc)/2 ; (Ya+Yc)/2 ]
B= ( -3/2 ; 1/2 )
3. E= ( -Xb ; -Yb )
E= ( 3/2 ; -1/2 )
6. AC= Racine de [ (Xc-Xa)² + (Yc-Ya)² ]
AC= Racine de (36)
AC= 6
7. ACD triangle rectangle en D puisque [AC] diamètre du cercle (C) et D appartient au cercle (C).
9. AF= Racine de [ (Xf-Xa)² + (Yf-Ya)² ]
AF= Racine de (20)
AF= 2Racine de (5)
FC= Racine de [ (Xc-Xf)² + (Yc-Yf)² ]
FC= Racine de (2)
Voila, en espèrant t'avoir aidé.