Bonjour, j'aurai besoin d'aide sur cet exercice de mathématique niveau terminale, car je ne comprend pas ce qu'il faut faire. Soit (a, b, m, n) ∈ Z⁴ avec m et n ⩾ 2 tels que m ∧ n = 1 (PGCD(m, n) = 1). On considère une relation de Bézout mu + nv = 1.
On cherche les entiers x tels que x ≡ a [m] et x ≡ b [n].

Question :

(1) Vérifier que l’entier x₀ = bmu + anv convient.

(2) Démontrer qu’un entier x convient si, et seulement si, x ≡ x₀ [mn].

(3) Application numérique.
(a) Déterminer les entiers x tels que x ≡ 2 [3] et x ≡ 3 [5].

(b) En déduire les entiers x tels que x ≡ 2 [3], x ≡ 3 [5] et x ≡ 2 [7], puis donner la plus petite solution positive.
Please enter comments
Please enter your name.
Please enter the correct email address.
You must agree before submitting.
More Questions From This User See All

Helpful Social

Copyright © 2025 ELIBRARY.TIPS - All rights reserved.