je suis sur un dm de maths difficiles sur les vecteurs est j'aimerai bcp que l'on m'explique ( sans me donner la reponse) : 1)comment démontrer que CB+AB=DB 2)montrer que MA+MC+BM+DM=0
Il faut utiliser la relation de chasles AB + BC = AC Mais il manque la situation des points Je suppose que ABCD est un parallèlogramme alors CA + AB + AB = DA + AB => CA + AB = CB = DA (regarde sur la figure) 2) MA + MC + BA + AM + DC + CM = BA + DC = 0 NB : MA + AM = MC + CM = 0 regarder sur le parallélogramme
1 votes Thanks 1
king59
en effet ABCD est un parallélogramme mais la figure n'est pas construite, enfin donné
king59
je suis désolée mais je ne comprend toujours pas
danielwenin
c'est toujours la relation de Chasles ainsi CB = CA + AB et ainsi de suite après tu supprimes les termes semblables
Lista de comentários
Verified answer
Il faut utiliser la relation de chaslesAB + BC = AC
Mais il manque la situation des points
Je suppose que ABCD est un parallèlogramme
alors CA + AB + AB = DA + AB => CA + AB = CB = DA (regarde sur la figure)
2) MA + MC + BA + AM + DC + CM = BA + DC = 0
NB : MA + AM = MC + CM = 0
regarder sur le parallélogramme