Articles
Register
Sign In
Search
Ellana62151
@Ellana62151
January 2021
1
47
Report
bonjour les amis!
j'ai besoin qu'on m'aide en mathématiques car jai un DM pas facile pour moi. merci a ceux qui m'aiderons.
Please enter comments
Please enter your name.
Please enter the correct email address.
Agree to
terms and service
You must agree before submitting.
Send
Lista de comentários
scoladan
Verified answer
Bonjour,
M ∈ [AB] ⇒ x = AM ∈ [0;5]
A = Aire(ABCD) - Aire(AMQ) - Aire(CPN) - Aire(BNM) - Aire(DQP)
Aire(AMQ) = Aire(CPN) = (AM x AQ)/2 = x²/2
Aire(BNM) = Aire(DQP) = (BM x BN)/2 = (5 - x)(3 - x)/2
Aire(ABCD) = 3 x 5 = 15 cm²
Donc A = 15 - 2*x²/2 - 2*(5 - x)(3 - x)/2
⇔ A = 15 - x² - (15 -5x - 3x + x²)
⇔ A = -2x² + 8x
a) A - 8 = -2x² + 8x - 8 = -2(x² - 4x + 4) = -2(x - 2)²
donc (A - 8) ≤ 0
b) On peut en déduire : A ≤ 8
c) (x - 1)(x - 3) = x² - 3x - x + 3 = x² - 4x + 3
d) A ≤ 6
⇔ -2x² + 8x ≤ 6
⇔ -2x² + 8x - 6 ≤ 0
⇔ x² - 4x + 3 ≥ 0
⇔ (x - 1)(x - 3) ≥ 0
x 0 1 3 5
(x - 1) - 0 + +
(x - 3) - - 0 +
(x - 1)(x - 3) + 0 - 0 +
Donc A ≤ 6 pour x ∈ [0;1] ∪ [3;5]
0 votes
Thanks 0
×
Report "bonjour les amis! j'ai besoin qu'on m'aide en mathématiques car jai un DM pas facile pour moi. merci.... Pergunta de ideia de Ellana62151"
Your name
Email
Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint
Description
Helpful Links
Sobre nós
Política de Privacidade
Termos e Condições
direito autoral
Contate-Nos
Helpful Social
Get monthly updates
Submit
Copyright © 2024 ELIBRARY.TIPS - All rights reserved.
Lista de comentários
Verified answer
Bonjour,M ∈ [AB] ⇒ x = AM ∈ [0;5]
A = Aire(ABCD) - Aire(AMQ) - Aire(CPN) - Aire(BNM) - Aire(DQP)
Aire(AMQ) = Aire(CPN) = (AM x AQ)/2 = x²/2
Aire(BNM) = Aire(DQP) = (BM x BN)/2 = (5 - x)(3 - x)/2
Aire(ABCD) = 3 x 5 = 15 cm²
Donc A = 15 - 2*x²/2 - 2*(5 - x)(3 - x)/2
⇔ A = 15 - x² - (15 -5x - 3x + x²)
⇔ A = -2x² + 8x
a) A - 8 = -2x² + 8x - 8 = -2(x² - 4x + 4) = -2(x - 2)²
donc (A - 8) ≤ 0
b) On peut en déduire : A ≤ 8
c) (x - 1)(x - 3) = x² - 3x - x + 3 = x² - 4x + 3
d) A ≤ 6
⇔ -2x² + 8x ≤ 6
⇔ -2x² + 8x - 6 ≤ 0
⇔ x² - 4x + 3 ≥ 0
⇔ (x - 1)(x - 3) ≥ 0
x 0 1 3 5
(x - 1) - 0 + +
(x - 3) - - 0 +
(x - 1)(x - 3) + 0 - 0 +
Donc A ≤ 6 pour x ∈ [0;1] ∪ [3;5]