1)Bon bah pas besoin d'explication donc les deux angles mesurent 45°.
2)
On suppose que DE= 3,5cm. Comme le triangle est isocèle DC mesure également 3,5cm et il est rectangle donc on peut utiliser le théorème de Pythagore pour vérifier cela:
CE²≅DE²+DC²
5²≅3,5²+3,5²
25≅12,25+12,25
25≅ 24,5
Comme 3,5 était une valeur approché et que 24,5 est proche de 25 on peut en déduire que DE mesure a peu près 3,5cm.
3) A=5²+(3,5²÷2)
A=25+12,25÷2
A=25+6,125
A=31,125
ex2:
1)par la symétrie centrale de B qui transforme A en C.
2) par la translation qui transforme D en I.
3)par la symétrie centrale de B qui transforme D en L.
Lista de comentários
Réponse :
ex1:
1)Bon bah pas besoin d'explication donc les deux angles mesurent 45°.
2)
On suppose que DE= 3,5cm. Comme le triangle est isocèle DC mesure également 3,5cm et il est rectangle donc on peut utiliser le théorème de Pythagore pour vérifier cela:
CE²≅DE²+DC²
5²≅3,5²+3,5²
25≅12,25+12,25
25≅ 24,5
Comme 3,5 était une valeur approché et que 24,5 est proche de 25 on peut en déduire que DE mesure a peu près 3,5cm.
3) A=5²+(3,5²÷2)
A=25+12,25÷2
A=25+6,125
A=31,125
ex2:
1)par la symétrie centrale de B qui transforme A en C.
2) par la translation qui transforme D en I.
3)par la symétrie centrale de B qui transforme D en L.
4)par la symétrie axiale de la droite (HG).
ex3:
1) a toi de le faire x)
2)par 3/2