Réponse :
Explications étape par étape
Bonjour
a) developper :
A = (6 - x)^2
A = 36 - 12x + x^2
A = x^2 - 12x + 36
B = (6 - x)(4 - x)
B = 24 - 6x - 4x + x^2
B = x^2 - 10x + 24
b) écriture développée et réduite :
E = (6 - x)^2 - (6 - x)(4 - x) + 2(36 - x^2)
E = x^2 - 12x + 36 - (x^2 - 10x + 24) + 72 - 2x^2
E = -2x^2 - 2x + 84
c) factoriser E :
E = (6 - x)^2 - (6 - x)(4 - x) + 2(6 - x)(6 + x)
E = (6 - x)(6 - x - 4 + x + 2(6 + x))
E = (6 - x)(2 + 12 + 2x)
E = (6 - x)(2x + 14)
E = (6 - x) * 2(x + 7)
E = 2(6 - x)(x + 7)
d) résoudre E = 0 :
6 - x = 0 ou x + 7 = 0
x = 6 ou x = -7
e) résoudre E = 84 :
-2x^2 - 2x + 84 = 84
-2x^2 - 2x = 0
-2x(x + 1) = 0
-2x = 0 ou x + 1 = 0
x = 0 ou x = -1
bonjour
A = ( 6 - x ) ²
= 36 - 12 x + x²
B = ( 6 - x ) ( 4 - x )
= 24 - 6 x - 4 x + x²
= 24 - 10 x + x²
E = ( 6 - x )² - ( 6 - x ) ( 4 - x ) + 2 ( 36 - x ²)
= 36 - 12 x + x² - ( 24 - 6 x - 4 x + x² ) + 72 - 2 x²
= x² - 12 x + 36 - x² + 10 x - 24 + 72 - 2 x²
= - 2 x² - 2 x + 84
E = ( 6 - x )² - ( 6 x - x ) ( 4 - x ) + 2 ( 6 - x ) ( 6 + x )
= ( 6 - x ) ( 6 -x - 4 + x + 12 + 2 x )
= ( 6 - x ) ( 2 x + 14 )
= 2 ( 6 - x ) ( x + 7 )
E = 0 quand 6 - x = 0 ⇔ - x = - 6 ⇔ x = 6
ou quand 2 x + 14 = 0 ⇔ 2 x = - 14 ⇔ x = - 7
E = 84
- 2 x² - 2 x + 84 = 84
- 2 x² - 2 x + 84 - 84 = 0
2 x ( - x - 1 ) = 0
soit 2 x = 0 ⇔ x = 0
soit - x -1 = 0 ⇔ - x = 1 ⇔ x = - 1
Copyright © 2024 ELIBRARY.TIPS - All rights reserved.
Lista de comentários
Réponse :
Explications étape par étape
Bonjour
a) developper :
A = (6 - x)^2
A = 36 - 12x + x^2
A = x^2 - 12x + 36
B = (6 - x)(4 - x)
B = 24 - 6x - 4x + x^2
B = x^2 - 10x + 24
b) écriture développée et réduite :
E = (6 - x)^2 - (6 - x)(4 - x) + 2(36 - x^2)
E = x^2 - 12x + 36 - (x^2 - 10x + 24) + 72 - 2x^2
E = -2x^2 - 2x + 84
c) factoriser E :
E = (6 - x)^2 - (6 - x)(4 - x) + 2(36 - x^2)
E = (6 - x)^2 - (6 - x)(4 - x) + 2(6 - x)(6 + x)
E = (6 - x)(6 - x - 4 + x + 2(6 + x))
E = (6 - x)(2 + 12 + 2x)
E = (6 - x)(2x + 14)
E = (6 - x) * 2(x + 7)
E = 2(6 - x)(x + 7)
d) résoudre E = 0 :
6 - x = 0 ou x + 7 = 0
x = 6 ou x = -7
e) résoudre E = 84 :
-2x^2 - 2x + 84 = 84
-2x^2 - 2x = 0
-2x(x + 1) = 0
-2x = 0 ou x + 1 = 0
x = 0 ou x = -1
Verified answer
bonjour
A = ( 6 - x ) ²
= 36 - 12 x + x²
B = ( 6 - x ) ( 4 - x )
= 24 - 6 x - 4 x + x²
= 24 - 10 x + x²
E = ( 6 - x )² - ( 6 - x ) ( 4 - x ) + 2 ( 36 - x ²)
= 36 - 12 x + x² - ( 24 - 6 x - 4 x + x² ) + 72 - 2 x²
= x² - 12 x + 36 - x² + 10 x - 24 + 72 - 2 x²
= - 2 x² - 2 x + 84
E = ( 6 - x )² - ( 6 x - x ) ( 4 - x ) + 2 ( 6 - x ) ( 6 + x )
= ( 6 - x ) ( 6 -x - 4 + x + 12 + 2 x )
= ( 6 - x ) ( 2 x + 14 )
= 2 ( 6 - x ) ( x + 7 )
E = 0 quand 6 - x = 0 ⇔ - x = - 6 ⇔ x = 6
ou quand 2 x + 14 = 0 ⇔ 2 x = - 14 ⇔ x = - 7
E = 84
- 2 x² - 2 x + 84 = 84
- 2 x² - 2 x + 84 - 84 = 0
2 x ( - x - 1 ) = 0
soit 2 x = 0 ⇔ x = 0
soit - x -1 = 0 ⇔ - x = 1 ⇔ x = - 1