Bonjours pouvez vous m'aider pour l'exercice 3 SVP, je n'arrive pas
Lista de comentários
nadiab
Bonjour, Le triangle GIH est un triangle rectangle en H Appliquer le théorème de Pythagore GI²= GH²+IH² GI²= 3²+4² GI=√25 GI= 5 Calcul de JK Appl les égal de Thalès JI/HI= JK/GH 2/4=JK/3 4JK= 3*2 JK= 6/4 JK= 1.5
(IJ) et (JK) sont -elles ⊥ ? IK²= 2.5²= 6.25 IJ²+JK²= 2²+1.5²= 6.25 Non seulement le triangle IJK est rectangle en J, donc (IJ) et (JK) sont ⊥
Les deux triangles GHI et IJK sont deux triangle rectangles (IJ) est perpendiculaire à (JK) (GH) est perpendiculaire à (HI) Alors (GH) et (JK) sont parallèles.
0 votes Thanks 1
ybe
Non le segment ij et kl sont perpendiculaire car elles se croire en un seul point et forme un angle droit. GH et JK sont paralle car elles ne se croisent pas.
Lista de comentários
Le triangle GIH est un triangle rectangle en H
Appliquer le théorème de Pythagore
GI²= GH²+IH²
GI²= 3²+4²
GI=√25
GI= 5
Calcul de JK
Appl les égal de Thalès
JI/HI= JK/GH
2/4=JK/3
4JK= 3*2
JK= 6/4
JK= 1.5
(IJ) et (JK) sont -elles ⊥ ?
IK²= 2.5²= 6.25
IJ²+JK²= 2²+1.5²= 6.25
Non seulement le triangle IJK est rectangle en J, donc (IJ) et (JK) sont ⊥
Les deux triangles GHI et IJK sont deux triangle rectangles
(IJ) est perpendiculaire à (JK)
(GH) est perpendiculaire à (HI)
Alors (GH) et (JK) sont parallèles.
GH et JK sont paralle car elles ne se croisent pas.