Bonsoir, J’aurais besoin d’aide par rapport à cette exercice.
Suite au dernier que j’ai fait
———>

L’exercice

1. Vérifier que la somme des trois
nombres entiers consécutifs 1 492, 1 493 et 1494
est divisible par 3.
2. a) Écrire sans parenthèses et réduire
l'expression F= n + (n + 1) + (n + 2).
b) Factoriser l'expression obtenue.
c) Montrer que la somme de trois nombres
entiers consécutifs est divisible par 3.
3. Marion préfère appeler n le nombre du
milieu, retrouver le résultat de la question 2.c).

Réponse:
1.
1492+1493+1494=4479
4479:3=1493
Donc oui il est divisibles par 3.

2.
a)F=n+(n+1)+(n+2)
=n+n+1+n+2
=3n+3
b)=3(n+1)
c) calcul du a)
Donc oui , divisible par 3

3.(n-1)+n+(n+1)
=n-1+n+n+1
=3n

Puis...
Je ne comprend pas vraiment celui qui le suit :

1.Soit n un nombre entier.
Écrire en fonction de n :
a) son double .
b)son triple.
2. Montrer que la somme d’un nombre entier, de son double et de son triple est divisible par 6.

Merci de prendre le temps de me répondre.
Bonne soirée
Please enter comments
Please enter your name.
Please enter the correct email address.
You must agree before submitting.

Helpful Social

Copyright © 2024 ELIBRARY.TIPS - All rights reserved.