Réponse :
Bonjour
a^2 - b^2 = (a - b)(a + b)
Explications étape par étape
Factoriser
C1 = (x + 3)^2 - 25(3x + 4)^2
C1 = (x + 3)^2 - 5^2(3x + 4)^2
C1 = [x + 3 - 5(3x + 4)][x + 3 + 5(3x + 4)]
C1 = (x + 3 - 15x - 20)(x + 3 + 15x + 20)
C1 = (-14x - 17)(16x + 23)
C2 = x^2 - 9 - (2x + 5)(x - 3) + 5x - 15
C2 = x^2 - 3^2 - (2x + 5)(x - 3) + 5(x - 3)
C2 = (x - 3)(x + 3) - (x - 3)(2x + 5) + 5(x - 3)
C2 = (x - 3)(x + 3 - 2x - 5 + 5)
C2 = (x - 3)(-x + 3)
C2 = -(x - 3)^2
C3 = x^2 - 16 + (x + 4)^2
C3 = x^2 - 4^2 + (x + 4)^2
C3 = (x - 4)(x + 4) + (x + 4)^2
C3 = (x + 4)(x - 4 + x + 4)
C3 = (x + 4)(2x)
C3 = 2x(x + 4)
C4 = (2x + 7)^2 + 10x + 35
C4 = (2x + 7)^2 + 5(2x + 7)
C4 = (2x + 7)(2x + 7 + 5)
C4 = (2x + 7)(2x + 12)
C4 = 2(2x + 7)(x + 6)
Copyright © 2024 ELIBRARY.TIPS - All rights reserved.
Lista de comentários
Verified answer
Réponse :
Bonjour
a^2 - b^2 = (a - b)(a + b)
Explications étape par étape
Factoriser
C1 = (x + 3)^2 - 25(3x + 4)^2
C1 = (x + 3)^2 - 5^2(3x + 4)^2
C1 = [x + 3 - 5(3x + 4)][x + 3 + 5(3x + 4)]
C1 = (x + 3 - 15x - 20)(x + 3 + 15x + 20)
C1 = (-14x - 17)(16x + 23)
C2 = x^2 - 9 - (2x + 5)(x - 3) + 5x - 15
C2 = x^2 - 3^2 - (2x + 5)(x - 3) + 5(x - 3)
C2 = (x - 3)(x + 3) - (x - 3)(2x + 5) + 5(x - 3)
C2 = (x - 3)(x + 3 - 2x - 5 + 5)
C2 = (x - 3)(-x + 3)
C2 = -(x - 3)^2
C3 = x^2 - 16 + (x + 4)^2
C3 = x^2 - 4^2 + (x + 4)^2
C3 = (x - 4)(x + 4) + (x + 4)^2
C3 = (x + 4)(x - 4 + x + 4)
C3 = (x + 4)(2x)
C3 = 2x(x + 4)
C4 = (2x + 7)^2 + 10x + 35
C4 = (2x + 7)^2 + 5(2x + 7)
C4 = (2x + 7)(2x + 7 + 5)
C4 = (2x + 7)(2x + 12)
C4 = 2(2x + 7)(x + 6)