Articles
Register
Sign In
Search
kity99
@kity99
January 2021
1
93
Report
Bonsoir,
Je suis en terminale S ,
j'ai besoin de l'aide pour l'exercice, c'est pour lundi
Merci pour ceux qui pourront m'aidez
Please enter comments
Please enter your name.
Please enter the correct email address.
Agree to
terms and service
You must agree before submitting.
Send
Lista de comentários
scoladan
Verified answer
Bonjour,
1) f est croissante notamment sur [0;+∞[
2) Vrai pour n = 0 : 2 ≤ U₀ ≤ 10
Hypothèse : Vrai au rang n
Au rang n+1 : Un+1 = f(Un)
D'après l'hypothèse de récurrence : 2 ≤ Un ≤ 10
et f est croissante sur [2;9] avec f(2) = ... = 2 et f(10) = ... = 10
⇒ f(2) ≤ f(Un) ≤ f(10)
⇒ 2 ≤ Un+1 ≤ 10
Récurrence démontrée
3) U₁ = f(U₀) = f(9) ≈ 7,6 donc U₁ < U₀
Supposons qu'au rang n, Un+1 < Un
Au rang n+1 :
Un+2 = f(Un+1)
Par hypothèse Un > Un+1
et f est croissante
⇒ f(Un) > f(Un+1)
⇔ Un+1 > Un+2
Récurrence démontrée
⇒ (Un) décroissante
4) Voir ci-joint
5) On peut conjecturer que lim Un quand n→+∞ = 2
(Un) est décroissante et (Un) est minorée par 2
⇒ (Un) convergente
Soit l = lim Un quand n→+∞, on a donc 2 ≤ Un < l
Alors f(2) ≤ f(Un) < f(l) car f croissante
⇔ 2 ≤ Un+1 < f(l)
Or lim Un+1 = l également
⇒ l = f(l)
D'après le 1), sur [2;10], l = 2 ou 10 ⇒ l = 2
0 votes
Thanks 0
More Questions From This User
See All
kity99
June 2021 | 0 Respostas
Responda
kity99
June 2021 | 0 Respostas
Responda
kity99
June 2021 | 0 Respostas
Responda
kity99
June 2021 | 0 Respostas
Responda
kity99
June 2021 | 0 Respostas
Responda
kity99
June 2021 | 0 Respostas
Responda
kity99
February 2021 | 0 Respostas
Responda
kity99
February 2021 | 0 Respostas
Responda
kity99
February 2021 | 0 Respostas
Responda
kity99
February 2021 | 0 Respostas
Responda
×
Report "Bonsoir, Je suis en terminale S , j'ai besoin de l'aide pour l'exercice, c'est pour lundi Merci po.... Pergunta de ideia de kity99"
Your name
Email
Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint
Description
Helpful Links
Sobre nós
Política de Privacidade
Termos e Condições
direito autoral
Contate-Nos
Helpful Social
Get monthly updates
Submit
Copyright © 2024 ELIBRARY.TIPS - All rights reserved.
Lista de comentários
Verified answer
Bonjour,1) f est croissante notamment sur [0;+∞[
2) Vrai pour n = 0 : 2 ≤ U₀ ≤ 10
Hypothèse : Vrai au rang n
Au rang n+1 : Un+1 = f(Un)
D'après l'hypothèse de récurrence : 2 ≤ Un ≤ 10
et f est croissante sur [2;9] avec f(2) = ... = 2 et f(10) = ... = 10
⇒ f(2) ≤ f(Un) ≤ f(10)
⇒ 2 ≤ Un+1 ≤ 10
Récurrence démontrée
3) U₁ = f(U₀) = f(9) ≈ 7,6 donc U₁ < U₀
Supposons qu'au rang n, Un+1 < Un
Au rang n+1 :
Un+2 = f(Un+1)
Par hypothèse Un > Un+1
et f est croissante
⇒ f(Un) > f(Un+1)
⇔ Un+1 > Un+2
Récurrence démontrée
⇒ (Un) décroissante
4) Voir ci-joint
5) On peut conjecturer que lim Un quand n→+∞ = 2
(Un) est décroissante et (Un) est minorée par 2
⇒ (Un) convergente
Soit l = lim Un quand n→+∞, on a donc 2 ≤ Un < l
Alors f(2) ≤ f(Un) < f(l) car f croissante
⇔ 2 ≤ Un+1 < f(l)
Or lim Un+1 = l également
⇒ l = f(l)
D'après le 1), sur [2;10], l = 2 ou 10 ⇒ l = 2