Bonsoir On donne le programme de calcul suivant: Choisir un nombre x Enlever 5 Prendre son carré du résultat précédent. Quel nombre faut-il choisir au départ pour trouver 1 a la fin? Expliquer.
Choisir un nombre x Enlever 5 x - 5 Prendre son carré du résultat précédent (x - 5)²
Quel nombre faut-il choisir au départ pour trouver 1 à la fin ? (x - 5)² = 1 x² - 10x + 25 - 1 = 0 x² - 10x + 24 = 0 (x - 6) (x - 4) = 0 x - 6 = 0 ou x - 4 = 0 x = 6 x = 4
Pour trouver 1 à la fin, il faut choisir au départ 6 ou 4.
Vérification : Choisir un nombre 6 Enlever 5 6 - 5 = 1 Prendre son carré du résultat précédent 1² = 1
et
Choisir un nombre 4 Enlever 5 4 - 5 = - 1 Prendre son carré du résultat précédent - 1² = 1
Lista de comentários
Verified answer
Bonjour,Choisir un nombre
x
Enlever 5
x - 5
Prendre son carré du résultat précédent
(x - 5)²
Quel nombre faut-il choisir au départ pour trouver 1 à la fin ?
(x - 5)² = 1
x² - 10x + 25 - 1 = 0
x² - 10x + 24 = 0
(x - 6) (x - 4) = 0
x - 6 = 0 ou x - 4 = 0
x = 6 x = 4
Pour trouver 1 à la fin, il faut choisir au départ 6 ou 4.
Vérification :
Choisir un nombre
6
Enlever 5
6 - 5 = 1
Prendre son carré du résultat précédent
1² = 1
et
Choisir un nombre
4
Enlever 5
4 - 5 = - 1
Prendre son carré du résultat précédent
- 1² = 1
Verified answer
Bonjour,On donne le programme de calcul suivant:
• Choisir un nombre : n
• Enlever 5 : n - 5
• Prendre le carré du résultat précédent :
Quel nombre faut-il choisir au départ pour trouver 1 à la fin? Expliquer.
Il faut que cette équation soit égale à 1 :
= 1
- 1 = 0
(n - 5 - 1)(n - 5 + 1) = 0
(n - 6)(n - 4) = 0
Un produit de facteurs est nul si et seulement si au moins un des facteurs est nul :
n - 6 = 0 ou n - 4 = 0
n = 6 ou n = 4
On vérifie :
• Choisir un nombre : 6
• Enlever 5 : 6 - 5 = 1
• Prendre le carré du résultat précédent : 1^2 = 1 vrai
• Choisir un nombre : 4
• Enlever 5 : 4 - 5 = -1
• Prendre le carré du résultat précédent : (-1)^2 = 1 vrai