Bonsoir pouvez vous m'aider svp Soit n un entier naturel. 1. Démontrer que, si un entier k divise 3n+2 et 2n + 1, alors k divise 1. 2. Que peut-on en déduire ?
Si k divise 3n+2 et k divise 2n+1, alors k est un diviseur commun de 3n+2 et 2n+1.
Remarque : si m divise a et b (avec a et b entiers et a>b), alors m divise a-b.
Donc si k divise 3n+2 et 2n+1, alors k divise (3n+2) - (2n+1), donc k divise :
(3n+2) - (2n+1) = 3n+2 - 2n - 1 = n + 1.
Donc k divise 3n+2, 2n+1 et n + 1. Donc si k divise 2n+1 et n + 1, alors k divise (2n+1) - (n + 1) = 2n+1 - n - 1 = n.
Donc k divise n. Bon, tu me vois venir...
si k divise n+1 et n, alors k divise (n+1) - n = n + 1 - n = 1.
k divise 1.
2)
Le seul nombre qui divise 1... C'est 1. Donc k=1.
Donc si le (seul) diviseur commun de 3n+2 et 2n+1 est 1, alors 3n+2 et 2n+1 sont premiers entre eux.
Voilà !
2 votes Thanks 1
stechris
Merci beaucoup, quand vous m'avez envoyé je n'avais pas bien compris la méthode mais après j'ai vu que ça correspondait avec un exemple vu en classe, merci pour votre aide
Hasyata
De rien ! Oui c'est la technique pour trouver le PGCD, mais ça marche ici.
hmidouDZ
T'es en Maths Expertes ? Moi j'ai utilisé la propriété de la combinaison linéaire
stechris
oui jsuis en Maths expertes mais nous n'avons pas encore appris cette propriété
Lista de comentários
Bonjour !
1)
n -> entier naturel
k -> entier
Si k divise 3n+2 et k divise 2n+1, alors k est un diviseur commun de 3n+2 et 2n+1.
Remarque : si m divise a et b (avec a et b entiers et a>b), alors m divise a-b.
Donc si k divise 3n+2 et 2n+1, alors k divise (3n+2) - (2n+1), donc k divise :
(3n+2) - (2n+1) = 3n+2 - 2n - 1 = n + 1.
Donc k divise 3n+2, 2n+1 et n + 1. Donc si k divise 2n+1 et n + 1, alors k divise (2n+1) - (n + 1) = 2n+1 - n - 1 = n.
Donc k divise n. Bon, tu me vois venir...
si k divise n+1 et n, alors k divise (n+1) - n = n + 1 - n = 1.
k divise 1.
2)
Le seul nombre qui divise 1... C'est 1. Donc k=1.
Donc si le (seul) diviseur commun de 3n+2 et 2n+1 est 1, alors 3n+2 et 2n+1 sont premiers entre eux.
Voilà !