Bonsoir
Une identité remarquable qu’il faut résoudre :
(x2-3)(x2+3x-10)=(x+5)(x2-5x+6)
(x^2 - 3)(x^2 + 3x - 10) = (x + 5)(x^2 - 5x + 6)
x^4 + 3x^3 - 10x^2 - 3x^2 - 9x + 30 = x^3 - 5x^2 + 6x + 5x^2 - 25x + 30
x^4 + 3x^3 - 13x^2 - 9x + 30 = x^3 - 19x + 30
x^4 + 3x^3 - x^3 - 13x^2 - 9x + 19x + 30 - 30 = 0
x^4 + 2x^3 - 13x^2 + 10x = 0
x(x^3 + 2x^2 - 13x + 10) = 0
x = 0
Ou
x^3 + 2x^2 - 13x + 10 = 0
On remarque que pour x = 1 c’est vrai :
= (x - 1)(ax^2 + bx + c)
= ax^3 + bx^2 + cx - ax^2 - bx - c
a = 1
b - a = 2
b = 2 + a = 2 + 1 = 3
c - b = -13
c = -13 + b = -13 + 3 = -10
(x - 1)(x^2 + 3x - 10) = 0
x = 1 ou
x^2 + 3x - 10 = 0
X1 = (-3 - 7)/2 = -10/2 = -5
X2 = (-3 + 7)/2 = 4/2 = 2
x(x - 1)(x + 5)(x - 2) = 0
Copyright © 2024 ELIBRARY.TIPS - All rights reserved.
Lista de comentários
Verified answer
Bonsoir
Une identité remarquable qu’il faut résoudre :
(x2-3)(x2+3x-10)=(x+5)(x2-5x+6)
(x^2 - 3)(x^2 + 3x - 10) = (x + 5)(x^2 - 5x + 6)
x^4 + 3x^3 - 10x^2 - 3x^2 - 9x + 30 = x^3 - 5x^2 + 6x + 5x^2 - 25x + 30
x^4 + 3x^3 - 13x^2 - 9x + 30 = x^3 - 19x + 30
x^4 + 3x^3 - x^3 - 13x^2 - 9x + 19x + 30 - 30 = 0
x^4 + 2x^3 - 13x^2 + 10x = 0
x(x^3 + 2x^2 - 13x + 10) = 0
x = 0
Ou
x^3 + 2x^2 - 13x + 10 = 0
On remarque que pour x = 1 c’est vrai :
= (x - 1)(ax^2 + bx + c)
= ax^3 + bx^2 + cx - ax^2 - bx - c
a = 1
b - a = 2
b = 2 + a = 2 + 1 = 3
c - b = -13
c = -13 + b = -13 + 3 = -10
(x - 1)(x^2 + 3x - 10) = 0
x = 1 ou
x^2 + 3x - 10 = 0
X1 = (-3 - 7)/2 = -10/2 = -5
X2 = (-3 + 7)/2 = 4/2 = 2
x(x - 1)(x + 5)(x - 2) = 0