Réponse:
1)
AC/AN = 3
AB/AM = 3
BC/MN = 3
Les triangles sont semblables car les côtes sont deux à deux de longueur.
2) Il faut diviser chaque longueur par 3, donc le rapport de réduction est de 1/3
Réponse :
1) expliquer pourquoi les triangles ABC et AMN sont des triangles semblables
si les rapports des côtés proportionnels sont égaux, alors les triangles sont semblables
MN/BC = AN/AC = AM/AB ⇔ 1.9/5.7 = 1.2/3.6 = 1.6/4.8
⇔ 1.9/3 x 1.9 = 1.2/3 x 1.2 = 1.6/3 x 1.6 ⇔ 1/3 = 1/3 = 1/3
Donc les rapports des côtés proportionnels sont égaux à 1/3 alors les triangles ABC et AMN sont semblables
2) déterminer le rapport de réduction pour passer du triangle ABC au triangle AMN
puisque les rapports des côtés proportionnels sont égaux à 1/3
donc le rapport de réduction est de 1/3
Explications étape par étape :
Copyright © 2024 ELIBRARY.TIPS - All rights reserved.
Lista de comentários
Réponse:
1)
AC/AN = 3
AB/AM = 3
BC/MN = 3
Les triangles sont semblables car les côtes sont deux à deux de longueur.
2) Il faut diviser chaque longueur par 3, donc le rapport de réduction est de 1/3
Réponse :
1) expliquer pourquoi les triangles ABC et AMN sont des triangles semblables
si les rapports des côtés proportionnels sont égaux, alors les triangles sont semblables
MN/BC = AN/AC = AM/AB ⇔ 1.9/5.7 = 1.2/3.6 = 1.6/4.8
⇔ 1.9/3 x 1.9 = 1.2/3 x 1.2 = 1.6/3 x 1.6 ⇔ 1/3 = 1/3 = 1/3
Donc les rapports des côtés proportionnels sont égaux à 1/3 alors les triangles ABC et AMN sont semblables
2) déterminer le rapport de réduction pour passer du triangle ABC au triangle AMN
puisque les rapports des côtés proportionnels sont égaux à 1/3
donc le rapport de réduction est de 1/3
Explications étape par étape :