Articles
Register
Sign In
Search
Mayetyohann2
@Mayetyohann2
May 2019
1
59
Report
Bonsoir tout le monde svp.....Besoin d'aide!!! comment calculer le module et l'argument du nbre complexe Z=1+cosФ+isinФ (Ф): s'appel teta
Please enter comments
Please enter your name.
Please enter the correct email address.
Agree to
terms and service
You must agree before submitting.
Send
Lista de comentários
scoladan
Verified answer
Bonjour,
z = (1 + cosθ) + isinθ
|z| = √[(1 + cosθ)² + sin²θ]
= √[1 + 2cosθ + cos²θ + sin²θ]
= √(2 + 2cosθ)
= √[2(1 + cosθ)]
= √[2(2cos²(θ/2)]
= 2cos(θ/2)
⇒ z = |z|[(1 + cosθ)/|z| + isinθ/|z|]
⇔ z = 2cos(θ/2)[(2cos²(θ/2)/2cos(θ/2) + isinθ/2cos(θ/2)]
⇔ z = 2cos(θ/2)[cos(θ/2) + i2sin(θ/2)cos(θ/2)/2cos(θ/2)]
⇔ z = 2cos(θ/2)[cos(θ/2) + isin(θ/2)]
⇒ arg(z) = θ/2
0 votes
Thanks 1
mayetyohann2
Mrci c'est la même rponse que j'ai trouvé.
More Questions From This User
See All
mayetyohann2
February 2021 | 0 Respostas
Responda
Mayetyohann2
April 2019 | 0 Respostas
Responda
Mayetyohann2
April 2019 | 0 Respostas
Responda
×
Report "Bonsoir tout le monde svp.....Besoin d'aide!!! comment calculer le module et l'argument du nbre comp.... Pergunta de ideia de Mayetyohann2"
Your name
Email
Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint
Description
Helpful Links
Sobre nós
Política de Privacidade
Termos e Condições
direito autoral
Contate-Nos
Helpful Social
Get monthly updates
Submit
Copyright © 2024 ELIBRARY.TIPS - All rights reserved.
Lista de comentários
Verified answer
Bonjour,z = (1 + cosθ) + isinθ
|z| = √[(1 + cosθ)² + sin²θ]
= √[1 + 2cosθ + cos²θ + sin²θ]
= √(2 + 2cosθ)
= √[2(1 + cosθ)]
= √[2(2cos²(θ/2)]
= 2cos(θ/2)
⇒ z = |z|[(1 + cosθ)/|z| + isinθ/|z|]
⇔ z = 2cos(θ/2)[(2cos²(θ/2)/2cos(θ/2) + isinθ/2cos(θ/2)]
⇔ z = 2cos(θ/2)[cos(θ/2) + i2sin(θ/2)cos(θ/2)/2cos(θ/2)]
⇔ z = 2cos(θ/2)[cos(θ/2) + isin(θ/2)]
⇒ arg(z) = θ/2