a)primeiro termo (a₁), ou seja, o termo que ocupa a primeira posição:15
b)sexagésimo oitavo termo (a₆₈): ?
c)número de termos (n): 68 (Justificativa: Embora a PA seja infinita, para o cálculo de um determinado termo, é feito um "corte" nesta PA infinita, de modo a considerar a posição que o termo ocupa (no caso, 68ª), equivalente ao número de termos.)
d)Embora não se saiba o valor do sexagésimo oitavo termo, apenas pela observação dos três primeiros termos da progressão fornecida, pode-se afirmar que a razão será positiva (afinal, os valores dos termos sempre crescem, afastam-se do zero, particularmente à sua direita, pensando-se na reta numérica e, para que isto aconteça, necessariamente se deve somar um valor constante positivo, a razão, a um termo qualquer) e o termo solicitado igualmente será maior que zero.
===========================================
(II)Determinação da razão (r) da progressão aritmética:
Observação 1: A razão (r), valor constante utilizado para a obtenção dos sucessivos termos, será obtida por meio da diferença entre um termo qualquer e seu antecessor imediato.
r = a₂ - a₁ ⇒
r = 19 - 15 ⇒
r = 4 (Razão positiva, conforme prenunciado no item d acima.)
===========================================
(III)Aplicação das informações fornecidas pelo problema e da razão acima obtida na fórmula do termo geral (an) da P.A., para obter-se o sexagésimo oitavo termo:
an = a₁ + (n - 1) . r ⇒
a₆₈ = a₁ + (n - 1) . (r) ⇒
a₆₈ = 15 + (68 - 1) . (4) ⇒
a₆₈ = 15 + (67) . (4) ⇒ (Veja a Observação 2.)
a₆₈ = 15 + 268 ⇒
a₆₈ = 283
Observação 2: Foi aplicada na parte destacada a regra de sinais da multiplicação: dois sinais diferentes, +x+ ou -x-, resultam sempre em sinal de positivo (+).
Resposta: O sexagésimo oitavo termo da P.A.(15, 19, 23,...) é 283.
DEMONSTRAÇÃO (PROVA REAL) DE QUE A RESPOSTA ESTÁ CORRETA
→Substituindo a₆₈ = 283 na fórmula do termo geral da PA e omitindo, por exemplo, o primeiro termo (a₁), verifica-se que o valor correspondente a ele será obtido nos cálculos, confirmando-se que o sexagésimo oitavo termo realmente corresponde ao afirmado:
an = a₁ + (n - 1) . r ⇒
a₆₈ = a₁ + (n - 1) . (r) ⇒
283 = a₁ + (68 - 1) . (4) ⇒
283 = a₁ + (67) . (4) ⇒
283 = a₁ + 268 ⇒ (Passa-se 268 ao 1º membro e altera-se o sinal.)
283 - 268 = a₁ ⇒
15 = a₁ ⇔ (O símbolo ⇔ significa "equivale a".)
a₁ = 15 (Provado que a₆₈ = 283.)
→Veja outras tarefas relacionadas a cálculo de termos em progressão aritmética e resolvidas por mim:
Lista de comentários
Olá! Segue a resposta com algumas explicações.
(I)Interpretação do problema:
Da P.A. (15, 19, 23,...), tem-se:
a)primeiro termo (a₁), ou seja, o termo que ocupa a primeira posição:15
b)sexagésimo oitavo termo (a₆₈): ?
c)número de termos (n): 68 (Justificativa: Embora a PA seja infinita, para o cálculo de um determinado termo, é feito um "corte" nesta PA infinita, de modo a considerar a posição que o termo ocupa (no caso, 68ª), equivalente ao número de termos.)
d)Embora não se saiba o valor do sexagésimo oitavo termo, apenas pela observação dos três primeiros termos da progressão fornecida, pode-se afirmar que a razão será positiva (afinal, os valores dos termos sempre crescem, afastam-se do zero, particularmente à sua direita, pensando-se na reta numérica e, para que isto aconteça, necessariamente se deve somar um valor constante positivo, a razão, a um termo qualquer) e o termo solicitado igualmente será maior que zero.
===========================================
(II)Determinação da razão (r) da progressão aritmética:
Observação 1: A razão (r), valor constante utilizado para a obtenção dos sucessivos termos, será obtida por meio da diferença entre um termo qualquer e seu antecessor imediato.
r = a₂ - a₁ ⇒
r = 19 - 15 ⇒
r = 4 (Razão positiva, conforme prenunciado no item d acima.)
===========================================
(III)Aplicação das informações fornecidas pelo problema e da razão acima obtida na fórmula do termo geral (an) da P.A., para obter-se o sexagésimo oitavo termo:
an = a₁ + (n - 1) . r ⇒
a₆₈ = a₁ + (n - 1) . (r) ⇒
a₆₈ = 15 + (68 - 1) . (4) ⇒
a₆₈ = 15 + (67) . (4) ⇒ (Veja a Observação 2.)
a₆₈ = 15 + 268 ⇒
a₆₈ = 283
Observação 2: Foi aplicada na parte destacada a regra de sinais da multiplicação: dois sinais diferentes, +x+ ou -x-, resultam sempre em sinal de positivo (+).
Resposta: O sexagésimo oitavo termo da P.A.(15, 19, 23,...) é 283.
=======================================================
DEMONSTRAÇÃO (PROVA REAL) DE QUE A RESPOSTA ESTÁ CORRETA
→Substituindo a₆₈ = 283 na fórmula do termo geral da PA e omitindo, por exemplo, o primeiro termo (a₁), verifica-se que o valor correspondente a ele será obtido nos cálculos, confirmando-se que o sexagésimo oitavo termo realmente corresponde ao afirmado:
an = a₁ + (n - 1) . r ⇒
a₆₈ = a₁ + (n - 1) . (r) ⇒
283 = a₁ + (68 - 1) . (4) ⇒
283 = a₁ + (67) . (4) ⇒
283 = a₁ + 268 ⇒ (Passa-se 268 ao 1º membro e altera-se o sinal.)
283 - 268 = a₁ ⇒
15 = a₁ ⇔ (O símbolo ⇔ significa "equivale a".)
a₁ = 15 (Provado que a₆₈ = 283.)
→Veja outras tarefas relacionadas a cálculo de termos em progressão aritmética e resolvidas por mim:
brainly.com.br/tarefa/13096434
brainly.com.br/tarefa/25743374
brainly.com.br/tarefa/7478751
brainly.com.br/tarefa/24574244
brainly.com.br/tarefa/1834984
brainly.com.br/tarefa/770666
brainly.com.br/tarefa/25473666
brainly.com.br/tarefa/24655419
brainly.com.br/tarefa/25462258
brainly.com.br/tarefa/25403124