Pour calculer la distance TL, nous pouvons utiliser la similitude des triangles TLL' et TSS'. Comme les triangles sont semblables, cela signifie que leurs côtés correspondants sont proportionnels.
La relation de proportionnalité peut être établie entre les côtés TL et TS (distance entre Théo et le Soleil) ainsi que les rayons RL' et RS' (rayon de la Lune et rayon du Soleil) :
TL / TS = RL' / RS'
Nous connaissons les valeurs suivantes : TS = 150 millions de km RS' = 695 000 km RL' = 1 736 km
En substituant ces valeurs dans la relation de proportionnalité, nous pouvons calculer la distance TL :
TL / 150 millions = 1 736 / 695 000
TL = (1 736 / 695 000) * 150 millions
Calculons maintenant cette expression :
TL ≈ 375 939 km
La distance TL, arrondie au kilomètre près, est d'environ 375 939 km.
Lista de comentários
Verified answer
Pour calculer la distance TL, nous pouvons utiliser la similitude des triangles TLL' et TSS'. Comme les triangles sont semblables, cela signifie que leurs côtés correspondants sont proportionnels.La relation de proportionnalité peut être établie entre les côtés TL et TS (distance entre Théo et le Soleil) ainsi que les rayons RL' et RS' (rayon de la Lune et rayon du Soleil) :
TL / TS = RL' / RS'
Nous connaissons les valeurs suivantes :
TS = 150 millions de km
RS' = 695 000 km
RL' = 1 736 km
En substituant ces valeurs dans la relation de proportionnalité, nous pouvons calculer la distance TL :
TL / 150 millions = 1 736 / 695 000
TL = (1 736 / 695 000) * 150 millions
Calculons maintenant cette expression :
TL ≈ 375 939 km
La distance TL, arrondie au kilomètre près, est d'environ 375 939 km.