Articles
Register
Sign In
Search
loli14
@loli14
January 2021
1
51
Report
exeecice 80 svp merci davance
Please enter comments
Please enter your name.
Please enter the correct email address.
Agree to
terms and service
You must agree before submitting.
Send
Lista de comentários
PAU64
Exercice 80 :
Il existe 3 identités remarquables à connaître :
(a + b)² = a² + 2 * a * b + b²
(a - b)² = a² - 2 * a * b + b²
(a + b) (a - b) = a² - b²
A = 49x² - 16
A = (7x)² - 4²
A = (7x - 4) (7x + 4)
B = 9y² - 24y + 16
B = (3y)² - 2 * 12 * y + 4²
B = (3y - 4)²
C = x² + 2x + 1
C = x² + 2 * x * 1 + 1²
C = (x + 1)²
D = 25 - 100t²
D = 5² - 10t²
D = (5 - 10t) (5 + 10t)
E = 36z² - 1
E = (6z)² - 1²
E = (6z - 1) (6z + 1)
F = 64 - 80x + 25x²
F = 8² - 2 * 40 * x + (5x)²
F = (8 - 5x)²
1 votes
Thanks 1
More Questions From This User
See All
loli14
January 2021 | 0 Respostas
exercice numero 1 s il vous plait
Responda
loli14
January 2021 | 0 Respostas
exercice 7 svp car je narrive pa
Responda
loli14
January 2021 | 0 Respostas
Responda
loli14
January 2021 | 0 Respostas
juste l'exercice 6 svp
Responda
loli14
January 2021 | 0 Respostas
ex 46 svp m'en rappelle plus
Responda
loli14
January 2021 | 0 Respostas
exercice 3 petit A svp merci
Responda
loli14
January 2021 | 0 Respostas
exercice 1 svp je n y arrive pas merci
Responda
loli14
January 2021 | 0 Respostas
3,4 heures fait 3 heures et combien de minutes svp
Responda
loli14
January 2021 | 0 Respostas
ex 1 numero 3 svp urgent
Responda
loli14
January 2021 | 0 Respostas
exercice 56 svpppppppp
Responda
×
Report "exeecice 80 svp merci davance.... Pergunta de ideia de loli14"
Your name
Email
Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint
Description
Helpful Links
Sobre nós
Política de Privacidade
Termos e Condições
direito autoral
Contate-Nos
Helpful Social
Get monthly updates
Submit
Copyright © 2024 ELIBRARY.TIPS - All rights reserved.
Lista de comentários
Il existe 3 identités remarquables à connaître :
(a + b)² = a² + 2 * a * b + b²
(a - b)² = a² - 2 * a * b + b²
(a + b) (a - b) = a² - b²
A = 49x² - 16
A = (7x)² - 4²
A = (7x - 4) (7x + 4)
B = 9y² - 24y + 16
B = (3y)² - 2 * 12 * y + 4²
B = (3y - 4)²
C = x² + 2x + 1
C = x² + 2 * x * 1 + 1²
C = (x + 1)²
D = 25 - 100t²
D = 5² - 10t²
D = (5 - 10t) (5 + 10t)
E = 36z² - 1
E = (6z)² - 1²
E = (6z - 1) (6z + 1)
F = 64 - 80x + 25x²
F = 8² - 2 * 40 * x + (5x)²
F = (8 - 5x)²