O valor da expressão é √3/2.
Para responder corretamente esse tipo de questão, devemos levar em consideração que:
Com essas informações, o MMC das frações é o produto dos denominadores, logo:
[(√3 + 1)/(√3 - 1) + (√3 - 1)/(√3 + 1)] = (√3 + 1 + √3 - 1)/(√3 + 1)(√3 - 1)
[(√3 + 1)/(√3 - 1) + (√3 - 1)/(√3 + 1)] = (2√3)/(√3 + 1)(√3 - 1)
Aplicando a distributiva:
[(√3 + 1)/(√3 - 1) + (√3 - 1)/(√3 + 1)] = (2√3)/(√3² - 1²)
[(√3 + 1)/(√3 - 1) + (√3 - 1)/(√3 + 1)] = (2√3)/4
[(√3 + 1)/(√3 - 1) + (√3 - 1)/(√3 + 1)] = √3/2
Leia mais em:
brainly.com.br/tarefa/19837126
É basicamente distributiva, mmc e produtos notáveis
Copyright © 2025 ELIBRARY.TIPS - All rights reserved.
Lista de comentários
O valor da expressão é √3/2.
Para responder corretamente esse tipo de questão, devemos levar em consideração que:
Com essas informações, o MMC das frações é o produto dos denominadores, logo:
[(√3 + 1)/(√3 - 1) + (√3 - 1)/(√3 + 1)] = (√3 + 1 + √3 - 1)/(√3 + 1)(√3 - 1)
[(√3 + 1)/(√3 - 1) + (√3 - 1)/(√3 + 1)] = (2√3)/(√3 + 1)(√3 - 1)
Aplicando a distributiva:
[(√3 + 1)/(√3 - 1) + (√3 - 1)/(√3 + 1)] = (2√3)/(√3² - 1²)
[(√3 + 1)/(√3 - 1) + (√3 - 1)/(√3 + 1)] = (2√3)/4
[(√3 + 1)/(√3 - 1) + (√3 - 1)/(√3 + 1)] = √3/2
Leia mais em:
brainly.com.br/tarefa/19837126
Verified answer
É basicamente distributiva, mmc e produtos notáveis