Articles
Register
Sign In
Search
samusami123
@samusami123
June 2021
1
76
Report
help urgent ! pour le dernier c'est une parenthèse qu'il manque ...
Please enter comments
Please enter your name.
Please enter the correct email address.
Agree to
terms and service
You must agree before submitting.
Send
Lista de comentários
slyz007
Verified answer
Exo1
1) On calcule le PGCD par la méthode d'Euclide :
1755=1053+702
1053=702+351
702=351x2+0
Donc le PGCD de 1755 et 1053 est 351
1755=351x5
1053=351x3
1755/1053=(351x5)/(351x3)=5/3
Le collectionneur pourra faire 351 lots
Chaque lot contiendra 5 cônes et 3 porcelaines.
Exo2
A=(2/3+2/5)/(1-5/7)
A=(10/15+6/15)/(7/7-5/7)
A=(16/15)/(2/7)
A=16/15*7/2=112/30=56/15
0 votes
Thanks 0
More Questions From This User
See All
samusami123
June 2021 | 0 Respostas
Aidez moi c'est juste le E et le F
Responda
samusami123
June 2021 | 0 Respostas
Responda
samusami123
June 2021 | 0 Respostas
Responda
samusami123
June 2021 | 0 Respostas
Responda
samusami123
June 2021 | 0 Respostas
Responda
samusami123
June 2021 | 0 Respostas
Responda
samusami123
June 2021 | 0 Respostas
Responda
samusami123
June 2021 | 0 Respostas
Responda
samusami123
June 2021 | 0 Respostas
Responda
samusami123
June 2021 | 0 Respostas
Responda
×
Report "help urgent ! pour le dernier c'est une parenthèse qu'il manque .... Pergunta de ideia de samusami123"
Your name
Email
Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint
Description
Helpful Links
Sobre nós
Política de Privacidade
Termos e Condições
direito autoral
Contate-Nos
Helpful Social
Get monthly updates
Submit
Copyright © 2024 ELIBRARY.TIPS - All rights reserved.
Lista de comentários
Verified answer
Exo11) On calcule le PGCD par la méthode d'Euclide :
1755=1053+702
1053=702+351
702=351x2+0
Donc le PGCD de 1755 et 1053 est 351
1755=351x5
1053=351x3
1755/1053=(351x5)/(351x3)=5/3
Le collectionneur pourra faire 351 lots
Chaque lot contiendra 5 cônes et 3 porcelaines.
Exo2
A=(2/3+2/5)/(1-5/7)
A=(10/15+6/15)/(7/7-5/7)
A=(16/15)/(2/7)
A=16/15*7/2=112/30=56/15