J'aurais besoin de vous pour l'exercice en dessous svp
Exercice 10: Soit g la fonction qui à un nombre entier n associe le reste de la division euclidienne de n par 3. 1. Déterminer g(5), g(12), g(16) 2. Quels sont les antécédents de 0? latitudo
Tout d'abord est ce que tu peux mettre meilleur commentaire ça m'aidera beaucoup
Explications étape par étape:
Pour trouver le reste de la division euclidienne de n par 3, on peut calculer n modulo 3. Ainsi :
g(5) = 5 modulo 3 = 2
g(12) = 12 modulo 3 = 0
g(16) = 16 modulo 3 = 1
Les antécédents de 0 sont les nombres entiers qui ont un reste de 0 lorsqu'ils sont divisés par 3. Autrement dit, ce sont les multiples de 3. Ainsi, les antécédents de 0 sont : ..., -6, -3, 0, 3, 6, ..
Lista de comentários
Verified answer
Réponse:
Tout d'abord est ce que tu peux mettre meilleur commentaire ça m'aidera beaucoup
Explications étape par étape:
Pour trouver le reste de la division euclidienne de n par 3, on peut calculer n modulo 3. Ainsi :
g(5) = 5 modulo 3 = 2
g(12) = 12 modulo 3 = 0
g(16) = 16 modulo 3 = 1
Les antécédents de 0 sont les nombres entiers qui ont un reste de 0 lorsqu'ils sont divisés par 3. Autrement dit, ce sont les multiples de 3. Ainsi, les antécédents de 0 sont : ..., -6, -3, 0, 3, 6, ..