Articles
Register
Sign In
Search
yunusemreeee
@yunusemreeee
January 2021
1
85
Report
Je suis bloqué sur ces exercices, aidez moi s'il vous plait
Please enter comments
Please enter your name.
Please enter the correct email address.
Agree to
terms and service
You must agree before submitting.
Send
Lista de comentários
scoladan
Verified answer
Bonjour,
III) z = a + ib
==> Z = [(a-2) + ib]/[a + (b+2)i]
= [(a-2) + ib]x[a - (b+2)i] /[a^2 + (b+2)^2]
= [ a(a-2) + b(b+2) + ( -(a-2)(b+2) + ab )i ] / [a^2 + (b+2)^2]
a) Z réel ==> -(a-2)(b+2) + ab = 0
<=> -(ab + 2a -2b - 4) + ab = 0
<=> -2a + 2b = -4
<=> (a-b) = 2
<=> b = a-2
L'ensemble des points M est la droite d'équation y = x-2
b) Z imaginaire pur
==> a(a-2) + b(b+2) = 0
<=> a^2 - 2a + b^2 + 2b = 0
<=> (a-1)^2 -1 + (b+1)^2 -1 = 0
<=> (a-1)^2 + (b+1)^2 = 2
==> Cercle de centre P(1;-1) et de rayon racine(2)
IV)
1) Z = (1-2i)(a+ib) - (a-ib)
= a + ib - 2ia + 2b - a + ib
= (2b) + 2(b -a)i
2) Z réel ==> b-a = 0 ==> b=a ==> Droite d'équation y = x
3) Z imaginaire ==> b=0 ==> Axe des réels y = 0
1 votes
Thanks 0
More Questions From This User
See All
yunusemreeee
June 2021 | 0 Respostas
Responda
yunusemreeee
January 2021 | 0 Respostas
Responda
yunusemreeee
January 2021 | 0 Respostas
Responda
Yunusemreeee
April 2019 | 0 Respostas
Responda
×
Report "Je suis bloqué sur ces exercices, aidez moi s'il vous plait.... Pergunta de ideia de yunusemreeee"
Your name
Email
Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint
Description
Helpful Links
Sobre nós
Política de Privacidade
Termos e Condições
direito autoral
Contate-Nos
Helpful Social
Get monthly updates
Submit
Copyright © 2024 ELIBRARY.TIPS - All rights reserved.
Lista de comentários
Verified answer
Bonjour,III) z = a + ib
==> Z = [(a-2) + ib]/[a + (b+2)i]
= [(a-2) + ib]x[a - (b+2)i] /[a^2 + (b+2)^2]
= [ a(a-2) + b(b+2) + ( -(a-2)(b+2) + ab )i ] / [a^2 + (b+2)^2]
a) Z réel ==> -(a-2)(b+2) + ab = 0
<=> -(ab + 2a -2b - 4) + ab = 0
<=> -2a + 2b = -4
<=> (a-b) = 2
<=> b = a-2
L'ensemble des points M est la droite d'équation y = x-2
b) Z imaginaire pur
==> a(a-2) + b(b+2) = 0
<=> a^2 - 2a + b^2 + 2b = 0
<=> (a-1)^2 -1 + (b+1)^2 -1 = 0
<=> (a-1)^2 + (b+1)^2 = 2
==> Cercle de centre P(1;-1) et de rayon racine(2)
IV)
1) Z = (1-2i)(a+ib) - (a-ib)
= a + ib - 2ia + 2b - a + ib
= (2b) + 2(b -a)i
2) Z réel ==> b-a = 0 ==> b=a ==> Droite d'équation y = x
3) Z imaginaire ==> b=0 ==> Axe des réels y = 0