✅ Após resolver os cálculos, concluímos que a tangente procurada da referida questão é:
[tex]\Large\displaystyle\text{$\begin{gathered}\boxed{\boxed{\:\:\:\bf \tan\theta = 1\:\:\:}}\end{gathered}$}[/tex]
Portanto, a opção correta é:
[tex]\Large\displaystyle\text{$\begin{gathered}\boxed{\boxed{\:\:\:\bf Alternativa\:E\:\:\:}}\end{gathered}$}[/tex]
Sejam as retas dadas:
[tex]\Large\begin{cases} r: y = x - 1\\s: y = 3\end{cases}[/tex]
Para calcular a tangente do ângulo que as retas formam entre si devemos utilizar a seguinte fórmula:
[tex]\Large\displaystyle\text{$\begin{gathered} \bf I\end{gathered}$}[/tex] [tex]\Large\displaystyle\text{$\begin{gathered} \tan\theta = \tan\left[\arctan\bigg(\bigg|\frac{m_{s} - m_{r}}{1 + m_{s}\cdot m_{r}}\bigg|\bigg)\right]\end{gathered}$}[/tex]
Observe que para realizar os cálculos devemos recuperar os coeficientes angulares de ambas as retas dadas. Então, temos:
[tex]\Large\displaystyle\text{$\begin{gathered} \textrm{Se}\:r:y = x - 1\Longrightarrow m_{r} = 1\end{gathered}$}[/tex]
[tex]\Large\displaystyle\text{$\begin{gathered} \therefore\:\:m_{r} = 1\end{gathered}$}[/tex]
[tex]\Large\displaystyle\text{$\begin{gathered} \textrm{Se}\:s:y = 3\Longrightarrow m_{s} = 0\end{gathered}$}[/tex]
[tex]\Large\displaystyle\text{$\begin{gathered} \therefore\:\:m_{s} = 0\end{gathered}$}[/tex]
Substituindo os valores dos coeficientes angulares das respectivas retas na equação "I", temos:
[tex]\Large\displaystyle\text{$\begin{gathered} \tan\theta = \tan\left[\arctan\bigg(\bigg|\frac{0 - 1}{1 + 0\cdot1}\bigg|\bigg)\right]\end{gathered}$}[/tex]
[tex]\Large\displaystyle\text{$\begin{gathered} = \tan\left[\arctan\bigg(\bigg|\frac{-1}{1}\bigg|\bigg)\right]\end{gathered}$}[/tex]
[tex]\Large\displaystyle\text{$\begin{gathered} = \tan\left[\arctan(|-1|)\right]\end{gathered}$}[/tex]
[tex]\Large\displaystyle\text{$\begin{gathered} = \tan\left[\arctan(1)\right]\end{gathered}$}[/tex]
[tex]\Large\displaystyle\text{$\begin{gathered} = \tan\left[45^{\circ}\right]\end{gathered}$}[/tex]
[tex]\Large\displaystyle\text{$\begin{gathered} = 1\end{gathered}$}[/tex]
✅ Portanto, a tangente do ângulo procurado é:
[tex]\Large\displaystyle\text{$\begin{gathered} \tan\theta = 1\end{gathered}$}[/tex]
[tex]\LARGE\displaystyle\text{$\begin{gathered} \underline{\boxed{\boldsymbol{\:\:\:Bons \:estudos!!\:\:\:Boa\: sorte!!\:\:\:}}}\end{gathered}$}[/tex]
Saiba mais:
[tex]\Large\displaystyle\text{$\begin{gathered} \underline{\boxed{\boldsymbol{\:\:\:Observe \:o\:Gr\acute{a}fico!!\:\:\:}}}\end{gathered}$}[/tex]
Copyright © 2024 ELIBRARY.TIPS - All rights reserved.
Lista de comentários
Verified answer
✅ Após resolver os cálculos, concluímos que a tangente procurada da referida questão é:
[tex]\Large\displaystyle\text{$\begin{gathered}\boxed{\boxed{\:\:\:\bf \tan\theta = 1\:\:\:}}\end{gathered}$}[/tex]
Portanto, a opção correta é:
[tex]\Large\displaystyle\text{$\begin{gathered}\boxed{\boxed{\:\:\:\bf Alternativa\:E\:\:\:}}\end{gathered}$}[/tex]
Sejam as retas dadas:
[tex]\Large\begin{cases} r: y = x - 1\\s: y = 3\end{cases}[/tex]
Para calcular a tangente do ângulo que as retas formam entre si devemos utilizar a seguinte fórmula:
[tex]\Large\displaystyle\text{$\begin{gathered} \bf I\end{gathered}$}[/tex] [tex]\Large\displaystyle\text{$\begin{gathered} \tan\theta = \tan\left[\arctan\bigg(\bigg|\frac{m_{s} - m_{r}}{1 + m_{s}\cdot m_{r}}\bigg|\bigg)\right]\end{gathered}$}[/tex]
Observe que para realizar os cálculos devemos recuperar os coeficientes angulares de ambas as retas dadas. Então, temos:
[tex]\Large\displaystyle\text{$\begin{gathered} \textrm{Se}\:r:y = x - 1\Longrightarrow m_{r} = 1\end{gathered}$}[/tex]
[tex]\Large\displaystyle\text{$\begin{gathered} \therefore\:\:m_{r} = 1\end{gathered}$}[/tex]
[tex]\Large\displaystyle\text{$\begin{gathered} \textrm{Se}\:s:y = 3\Longrightarrow m_{s} = 0\end{gathered}$}[/tex]
[tex]\Large\displaystyle\text{$\begin{gathered} \therefore\:\:m_{s} = 0\end{gathered}$}[/tex]
Substituindo os valores dos coeficientes angulares das respectivas retas na equação "I", temos:
[tex]\Large\displaystyle\text{$\begin{gathered} \tan\theta = \tan\left[\arctan\bigg(\bigg|\frac{0 - 1}{1 + 0\cdot1}\bigg|\bigg)\right]\end{gathered}$}[/tex]
[tex]\Large\displaystyle\text{$\begin{gathered} = \tan\left[\arctan\bigg(\bigg|\frac{-1}{1}\bigg|\bigg)\right]\end{gathered}$}[/tex]
[tex]\Large\displaystyle\text{$\begin{gathered} = \tan\left[\arctan(|-1|)\right]\end{gathered}$}[/tex]
[tex]\Large\displaystyle\text{$\begin{gathered} = \tan\left[\arctan(1)\right]\end{gathered}$}[/tex]
[tex]\Large\displaystyle\text{$\begin{gathered} = \tan\left[45^{\circ}\right]\end{gathered}$}[/tex]
[tex]\Large\displaystyle\text{$\begin{gathered} = 1\end{gathered}$}[/tex]
✅ Portanto, a tangente do ângulo procurado é:
[tex]\Large\displaystyle\text{$\begin{gathered} \tan\theta = 1\end{gathered}$}[/tex]
[tex]\LARGE\displaystyle\text{$\begin{gathered} \underline{\boxed{\boldsymbol{\:\:\:Bons \:estudos!!\:\:\:Boa\: sorte!!\:\:\:}}}\end{gathered}$}[/tex]
Saiba mais:
[tex]\Large\displaystyle\text{$\begin{gathered} \underline{\boxed{\boldsymbol{\:\:\:Observe \:o\:Gr\acute{a}fico!!\:\:\:}}}\end{gathered}$}[/tex]