Olá!
Primeiro deve-se determinar quantos ml existem por dose por pessoa 85:8, que é igual a 10,625ml.
Depois transforma-se o litro em ml, sabendo que 1L= 1000ml, da um total de 9350ml.
Dividimos esse número (9350) por 10,625 que da exatamente 880.
Logo, 880 pessoas poderão ser vacina das com 9,35L.
Resposta:
[tex]\textsf{Leia abaixo}[/tex]
Explicação passo a passo:
[tex]\sf \dfrac{85\:ml}{8\:pessoas} = \dfrac{9.350\:ml}{x\:pessoas}[/tex]
[tex]\sf 85x = 74.800[/tex]
[tex]\sf x = \dfrac{74.800}{85}[/tex]
[tex]\boxed{\boxed{\sf x = 880}}\leftarrow\textsf{pessoas}[/tex]
Copyright © 2025 ELIBRARY.TIPS - All rights reserved.
Lista de comentários
Olá!
Primeiro deve-se determinar quantos ml existem por dose por pessoa 85:8, que é igual a 10,625ml.
Depois transforma-se o litro em ml, sabendo que 1L= 1000ml, da um total de 9350ml.
Dividimos esse número (9350) por 10,625 que da exatamente 880.
Logo, 880 pessoas poderão ser vacina das com 9,35L.
\sf 85x = 74.80085x=74.800
\sf x = \dfrac{74.800}{85}x=8574.800
\boxed{\boxed{\sf x = 880}}\leftarrow\textsf{pessoas}x=880←pessoas
Resposta:
[tex]\textsf{Leia abaixo}[/tex]
Explicação passo a passo:
[tex]\sf \dfrac{85\:ml}{8\:pessoas} = \dfrac{9.350\:ml}{x\:pessoas}[/tex]
[tex]\sf 85x = 74.800[/tex]
[tex]\sf x = \dfrac{74.800}{85}[/tex]
[tex]\boxed{\boxed{\sf x = 880}}\leftarrow\textsf{pessoas}[/tex]