Resposta:
[tex]\textsf{Leia abaixo}[/tex]
Explicação passo a passo:
[tex]\sf B = \{\:\{4,4\} , \{5,3\} , \{3,5\} , \{6,2\} , \{2,6\} , \{5,4\} , \{4,5\} , \{6,3\} , \{3,6\} , ...\:}[/tex]
[tex]\sf ...\:\{5,5\} , \{6,4\} , \{4,6\} , \{6,5\} , \{5,6\} , \{6,6\}\:\}}[/tex]
[tex]\sf A = \{\:\{5,3\} ,\{5,4\} , \{5,5\} , \{5,6\}\:\}}[/tex]
[tex]\sf{P(A\:|\:B) = \dfrac{n(A\:\cap\:B)}{n(B)}}[/tex]
[tex]\boxed{\boxed{\sf{P(A\:|\:B) = \dfrac{4}{15} = 26,67\%}}}[/tex]
Copyright © 2024 ELIBRARY.TIPS - All rights reserved.
Lista de comentários
Verified answer
Resposta:
[tex]\textsf{Leia abaixo}[/tex]
Explicação passo a passo:
[tex]\sf B = \{\:\{4,4\} , \{5,3\} , \{3,5\} , \{6,2\} , \{2,6\} , \{5,4\} , \{4,5\} , \{6,3\} , \{3,6\} , ...\:}[/tex]
[tex]\sf ...\:\{5,5\} , \{6,4\} , \{4,6\} , \{6,5\} , \{5,6\} , \{6,6\}\:\}}[/tex]
[tex]\sf A = \{\:\{5,3\} ,\{5,4\} , \{5,5\} , \{5,6\}\:\}}[/tex]
[tex]\sf{P(A\:|\:B) = \dfrac{n(A\:\cap\:B)}{n(B)}}[/tex]
[tex]\boxed{\boxed{\sf{P(A\:|\:B) = \dfrac{4}{15} = 26,67\%}}}[/tex]