SALUT Dans un repère,on donne les points: A(-2;4) B(-3;5) D(4;6) a)Calculer les coordonnées du point C tel que le quadrilatère ABCD soit un parallélogramme. b)Quelles sont les coordonnées du point d'intersection des diagonales [AC] et [BD] ? c)Calculer les coordonnées du point E tel que ABDE soit un parallélogramme
A) Si ABCD est un parallélogramme alors les vecteurs AB et DC sont égaux Ils respectent alors cette équation Soit (xc;yc) les coordonnées du point C xb-xa = xc - xd -3+2= xc -4 xc= -1+4 Xc= 3
Yb-ya = yc-yd 5-4=yc-6 Yc= 1+6 Yc= 7
C ( 3;7)
B/ [AC] et [BD] sont les diagonales du parallélogramme. Alors l’intersection de ses 2 diagonales est le milieu du segment [AC] et [BD] Soit M de coordonnée (xm; ym) le milieu du segment AC Xm = (Xa+xb)/2 =(-2+(-3))/2 =-5/2 = -2,5
Ym= (y’a+yb)/2 =(4+5)/2 =9/2 = 4,5
M (-2,5;4,5)
C) Si ABDE est un parallélogramme alors les vecteurs AB et ED sont égaux Ils respectent alors cette équation Soit (xe;ye) les coordonnées du point E xb-xa = xd - xe -3+2= 4-xe -1 = 4 -xe Xe=5
Yb-ya = yd-ye 5-4=6-ye 1= 6 - ye Ye= 5
E( 5;5)
Voilà ! Normalement cela donne ces résultats j’espère qu’ils seront bons
Lista de comentários
A) Si ABCD est un parallélogramme alors les vecteurs AB et DC sont égaux
Ils respectent alors cette équation
Soit (xc;yc) les coordonnées du point C
xb-xa = xc - xd
-3+2= xc -4
xc= -1+4
Xc= 3
Yb-ya = yc-yd
5-4=yc-6
Yc= 1+6
Yc= 7
C ( 3;7)
B/ [AC] et [BD] sont les diagonales du parallélogramme. Alors l’intersection de ses 2 diagonales est le milieu du segment [AC] et [BD]
Soit M de coordonnée (xm; ym) le milieu du segment AC
Xm = (Xa+xb)/2
=(-2+(-3))/2
=-5/2
= -2,5
Ym= (y’a+yb)/2
=(4+5)/2
=9/2
= 4,5
M (-2,5;4,5)
C)
Si ABDE est un parallélogramme alors les vecteurs AB et ED sont égaux
Ils respectent alors cette équation
Soit (xe;ye) les coordonnées du point E
xb-xa = xd - xe
-3+2= 4-xe
-1 = 4 -xe
Xe=5
Yb-ya = yd-ye
5-4=6-ye
1= 6 - ye
Ye= 5
E( 5;5)
Voilà ! Normalement cela donne ces résultats j’espère qu’ils seront bons