Ex1A) 1) a.EF = BC - 2 * (tan(alpha)* AB/2 = 1 - 2 * (tan(alpha)* 1/2 = 1 - (tan(alpha)EB² = (AB/2)² + ((tan(alpha)* AB/2)² = 1/4 + tan²(alpha)/4 = (1+tan²(alpha))/4 EB = 1/2cos(alpha) b.f(alpha) = EF + 4 EB = 1 - tan(alpha) + 2/cos(alpha) = 1 + (2 - sin(alpha))/cos(alpha) 2) a. f'(alpha) = (-cos²(alpha) + sin(alpha)(2-sin(alpha)))/cos²(alpha) = ((sin²(alpha)-1) + sin(alpha)(2-sin(alpha)))/cos²(alpha) = (sin²(alpha)-1 + 2sin(alpha) - sin²(alpha))/cos²(alpha) = (2sin(alpha) - 1)/cos²(alpha) b.f'(alpha) = 0 donne 2sin(alpha) = 1 alors alpha = pi/6 puisque 0 < alpha < pi/4 c.f(pi/6) = 1 + (2 - 1/2)/(V3/2) = 1 + V3
B) 1)
BE = 1/2cos(alpha) et 0 < alpha < pi/4
V2/2 < cos(alpha) < 1
V2 < 2cos(alpha) < 2
1/2 < 1/2cos(alpha) < 1/V2 = V2/2
2)
EF = BC - 2 * V(EB² - 1/2²) = 1 - 2V(x² - 1/4)
g(x) = EF + 4 EB = 4x + 1 - 2V(x² - 1/4)
3) a.
g'(x) = 4 - 2x/V(x² - 1/4)
b.
Copyright © 2024 ELIBRARY.TIPS - All rights reserved.
Lista de comentários
Ex1
A) 1) a.
EF = BC - 2 * (tan(alpha)* AB/2 = 1 - 2 * (tan(alpha)* 1/2 = 1 - (tan(alpha)
EB² = (AB/2)² + ((tan(alpha)* AB/2)² = 1/4 + tan²(alpha)/4 = (1+tan²(alpha))/4
EB = 1/2cos(alpha)
b.
f(alpha) = EF + 4 EB = 1 - tan(alpha) + 2/cos(alpha) = 1 + (2 - sin(alpha))/cos(alpha)
2) a. f'(alpha) = (-cos²(alpha) + sin(alpha)(2-sin(alpha)))/cos²(alpha)
= ((sin²(alpha)-1) + sin(alpha)(2-sin(alpha)))/cos²(alpha)
= (sin²(alpha)-1 + 2sin(alpha) - sin²(alpha))/cos²(alpha)
= (2sin(alpha) - 1)/cos²(alpha)
b.
f'(alpha) = 0 donne 2sin(alpha) = 1 alors alpha = pi/6 puisque 0 < alpha < pi/4
c.
f(pi/6) = 1 + (2 - 1/2)/(V3/2) = 1 + V3
B) 1)
BE = 1/2cos(alpha) et 0 < alpha < pi/4
V2/2 < cos(alpha) < 1
V2 < 2cos(alpha) < 2
1/2 < 1/2cos(alpha) < 1/V2 = V2/2
2)
EF = BC - 2 * V(EB² - 1/2²) = 1 - 2V(x² - 1/4)
g(x) = EF + 4 EB = 4x + 1 - 2V(x² - 1/4)
3) a.
g'(x) = 4 - 2x/V(x² - 1/4)
b.