Articles
Register
Sign In
Search
Cyasminechabine
@Cyasminechabine
April 2019
1
28
Report
.slvp aider moi c'est a rendre !!
Dérivée
Please enter comments
Please enter your name.
Please enter the correct email address.
Agree to
terms and service
You must agree before submitting.
Send
Lista de comentários
Commentaires (10)
Verified answer
Ex 1 :
1) f(x)=-3/x+3x²+7
f'(x)=3/x²+6x
2) h(x)=(x²+3x-7)/(x+5)
h'(x)=((2x+3)(x+5)-(x²+3x-7))/(x+5)²
=(2x²+13x+15-x²-3x+7)/(x+5)²
=(x²+10x+22)/(x+5)²
3) g(x)=-π/x
g'(x)=π/x²
4) k(x)=(8-x)(2x²-x+7)
k'(x)=-(2x²-x+7)+(8-x)(4x-1)
=-2x²+x-7-4x²+32x-8+x
=-6x²+34x-15
ex 2:
f(x)=2/3x³-3/2x²-2x+1
f'(x)=2x²-3x-2=(2x+1)(x-2)
donc f est croissante sur ]-∞;-1/2] et sur [2;+∞[
f est décroissante sur [-1/2;2]
f(x)≥0 donne 4x³-9x²-12x+6≥0
soit S=[-1,22;0,4] U [3,07;+∞[
1 votes
Thanks 1
More Questions From This User
See All
cyasminechabine
February 2021 | 0 Respostas
Responda
cyasminechabine
January 2021 | 0 Respostas
Responda
cyasminechabine
January 2021 | 0 Respostas
Responda
Cyasminechabine
May 2019 | 0 Respostas
Responda
Cyasminechabine
April 2019 | 0 Respostas
Responda
Cyasminechabine
April 2019 | 0 Respostas
Responda
Cyasminechabine
April 2019 | 0 Respostas
Responda
×
Report "slvp aider moi c'est a rendre !! Dérivée.... Pergunta de ideia de Cyasminechabine"
Your name
Email
Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint
Description
Helpful Links
Sobre nós
Política de Privacidade
Termos e Condições
direito autoral
Contate-Nos
Helpful Social
Get monthly updates
Submit
Copyright © 2024 ELIBRARY.TIPS - All rights reserved.
Lista de comentários
Verified answer
Ex 1 :1) f(x)=-3/x+3x²+7
f'(x)=3/x²+6x
2) h(x)=(x²+3x-7)/(x+5)
h'(x)=((2x+3)(x+5)-(x²+3x-7))/(x+5)²
=(2x²+13x+15-x²-3x+7)/(x+5)²
=(x²+10x+22)/(x+5)²
3) g(x)=-π/x
g'(x)=π/x²
4) k(x)=(8-x)(2x²-x+7)
k'(x)=-(2x²-x+7)+(8-x)(4x-1)
=-2x²+x-7-4x²+32x-8+x
=-6x²+34x-15
ex 2:
f(x)=2/3x³-3/2x²-2x+1
f'(x)=2x²-3x-2=(2x+1)(x-2)
donc f est croissante sur ]-∞;-1/2] et sur [2;+∞[
f est décroissante sur [-1/2;2]
f(x)≥0 donne 4x³-9x²-12x+6≥0
soit S=[-1,22;0,4] U [3,07;+∞[