Articles
Register
Sign In
Search
Leasa
@Leasa
January 2021
1
122
Report
Svp je comprends pas
Résoudre x^2 -3x+2 < ( x-2)(3x+4)
Please enter comments
Please enter your name.
Please enter the correct email address.
Agree to
terms and service
You must agree before submitting.
Send
Lista de comentários
Aftershock
x² -3x+2 < (x-2)(3x+4)
x²-3x+2 < 3x²+4x-6x-8
-2x²-x+10 < 0
Δ = b²-4ac
Δ = (-1)²-4*(-2)*10
Δ = 1-(-80)
Δ = 81
x1 = (-b+
√
Δ)/2a
x1= (-(-1)+
√
81)/(2*(-2))
x1 = (1+9)/-4
x1 = -2,5
x2 =
(-b-√Δ)/2a
x2 = (-(-1)-√
81)/(2*(-2))
x2 = (1-9)/(-4)
x2 = 2
Les 2 racines sont donc S = {-2,5 ; 2}
Or, on sait que dans un polynôme du second degré de la forme
ax²+bx+c, si le coefficient a est négatif, alors la courbe est croissante, puis décroissante
Donc,
-2x²-x+10 est inférieur à 0 sur l'intervalle ]-
∞ ; -2,5[ ∪ ]2 ; +∞[
0 votes
Thanks 1
More Questions From This User
See All
Leasa
June 2021 | 0 Respostas
Responda
Leasa
June 2021 | 0 Respostas
Responda
Leasa
June 2021 | 0 Respostas
Responda
Leasa
June 2021 | 0 Respostas
Responda
Leasa
June 2021 | 0 Respostas
Responda
Leasa
February 2021 | 0 Respostas
Responda
Leasa
January 2021 | 0 Respostas
SVP C'est urgent f(x) = (x+3)^2 -36 Factoriser f(x)
Responda
Leasa
January 2021 | 0 Respostas
Responda
Leasa
January 2021 | 0 Respostas
Responda
Leasa
January 2021 | 0 Respostas
Responda
×
Report "Svp je comprends pas Résoudre x^2 -3x+2 < ( x-2)(3x+4).... Pergunta de ideia de Leasa"
Your name
Email
Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint
Description
Helpful Links
Sobre nós
Política de Privacidade
Termos e Condições
direito autoral
Contate-Nos
Helpful Social
Get monthly updates
Submit
Copyright © 2025 ELIBRARY.TIPS - All rights reserved.
Lista de comentários
x²-3x+2 < 3x²+4x-6x-8
-2x²-x+10 < 0
Δ = b²-4ac
Δ = (-1)²-4*(-2)*10
Δ = 1-(-80)
Δ = 81
x1 = (-b+√Δ)/2a
x1= (-(-1)+√81)/(2*(-2))
x1 = (1+9)/-4
x1 = -2,5
x2 = (-b-√Δ)/2a
x2 = (-(-1)-√81)/(2*(-2))
x2 = (1-9)/(-4)
x2 = 2
Les 2 racines sont donc S = {-2,5 ; 2}
Or, on sait que dans un polynôme du second degré de la forme
ax²+bx+c, si le coefficient a est négatif, alors la courbe est croissante, puis décroissante
Donc, -2x²-x+10 est inférieur à 0 sur l'intervalle ]-∞ ; -2,5[ ∪ ]2 ; +∞[