Articles
Register
Sign In
Search
Fiona113
@Fiona113
May 2019
1
71
Report
Svpp je suis en 2nd et je n'arrive pas , Mercii d'avance
Please enter comments
Please enter your name.
Please enter the correct email address.
Agree to
terms and service
You must agree before submitting.
Send
Lista de comentários
Geijutsu
Verified answer
Bonjour,
a) f(x) ≥ g(x) ⇒ x∈[-3;-2]∪[1;3]
b) f(x) > g(x) ⇒ x∈[-3;-2[∪]1;3]
c) f(x) ≤ g(x) ⇒ x∈[-2;1]
1 votes
Thanks 1
Fiona113
Mercii beaucoup !
More Questions From This User
See All
Fiona113
June 2021 | 0 Respostas
Responda
Fiona113
January 2021 | 0 Respostas
Responda
Fiona113
January 2021 | 0 Respostas
Cest que l'exercice 8 svp !
Responda
Fiona113
January 2021 | 0 Respostas
Responda
Fiona113
January 2021 | 0 Respostas
Svpp pour demain ! Mercii
Responda
Fiona113
January 2021 | 0 Respostas
Svp cest pour demain merciii
Responda
Fiona113
January 2021 | 0 Respostas
Responda
Fiona113
January 2021 | 0 Respostas
Responda
Fiona113
January 2021 | 0 Respostas
Svpp URGENT ! Merci d'avance !
Responda
Fiona113
January 2021 | 0 Respostas
Svppp jarrive PAS mercii
Responda
×
Report "Svpp je suis en 2nd et je n'arrive pas , Mercii d'avance.... Pergunta de ideia de Fiona113"
Your name
Email
Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint
Description
Helpful Links
Sobre nós
Política de Privacidade
Termos e Condições
direito autoral
Contate-Nos
Helpful Social
Get monthly updates
Submit
Copyright © 2024 ELIBRARY.TIPS - All rights reserved.
Lista de comentários
Verified answer
Bonjour,a) f(x) ≥ g(x) ⇒ x∈[-3;-2]∪[1;3]
b) f(x) > g(x) ⇒ x∈[-3;-2[∪]1;3]
c) f(x) ≤ g(x) ⇒ x∈[-2;1]