Articles
Register
Sign In
Search
Keymin
@Keymin
October 2020
2
155
Report
Fatorial: A expressão [tex] \frac{(n + 2)! + (n+1).(n-1)!}{(n+1).(n-1)!} [/tex] é:
a) n² + 2n
b) n² + 2n + 1
c) (n + 2)! + 1
d) (n + 2) . n! + 1
e) n³ + 2n² + 2n
Please enter comments
Please enter your name.
Please enter the correct email address.
Agree to
terms and service
You must agree before submitting.
Send
Lista de comentários
helocintra
3 votes
Thanks 4
Heberwagner
(n+2)! = (n+2)(n+1)n(n-1)!, substituindo na expressão, obtemos:
(n+2)(n+1)n(n-1)! + (n+1)(n-1)!
=> colocando (n+1)(n-1)! em evidência
(n+1)(n-1)!
(n+1)(n-1)! [n(n+2) + 1]
= n(n+2) + 1 =
n² + 2n + 1
==>> LETRA B
(n+1)(n-1)!
2 votes
Thanks 2
More Questions From This User
See All
Keymin
March 2022 | 0 Respostas
Responda
Keymin
October 2020 | 0 Respostas
Responda
Keymin
October 2020 | 0 Respostas
Responda
Keymin
October 2020 | 0 Respostas
Responda
Keymin
October 2020 | 0 Respostas
Responda
×
Report "Fatorial: A expressão [tex] \frac{(n + 2)! + (n+1).(n-1)!}{(n+1).(n-1)!} [/tex] é:a) n² + 2nb) n² + .... Pergunta de ideia de Keymin"
Your name
Email
Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint
Description
Helpful Links
Sobre nós
Política de Privacidade
Termos e Condições
direito autoral
Contate-Nos
Helpful Social
Get monthly updates
Submit
Copyright © 2024 ELIBRARY.TIPS - All rights reserved.
Lista de comentários
(n+2)(n+1)n(n-1)! + (n+1)(n-1)! => colocando (n+1)(n-1)! em evidência
(n+1)(n-1)!
(n+1)(n-1)! [n(n+2) + 1] = n(n+2) + 1 = n² + 2n + 1 ==>> LETRA B
(n+1)(n-1)!