[tex]\displaystyle \sf M = \frac{2x^2+2x-4}{x^2-2x+1}-\frac{6x}{x^2-x} \ \ ; \text{Para x = 2023} \\\\\ \text{Vamos simplificar ao m\'aximo. Fatorando }: \\\\ M = \frac{2(x^2+x-2) }{(x-1)^2}-\frac{6x}{x(x-1)}\\\\\\ \frac{2(x^2+2x-x-2)}{(x-1)^2}-\frac{6}{x-1} \\\\\\ M = \frac{2\left[x(x+2)-(x+2)\right]}{(x-1)^2}-\frac{6}{x-1} \\\\\\ M = \frac{2(x-1)(x+2)}{(x-1)^2}-\frac{6}{x-1}\\\\\\ M=\frac{2(x+2)}{x-1}-\frac{6}{x-1}\\\\\ M=\frac{2x+4-6}{x-1}\\\\ M=\frac{2x-2}{x-1} \\\\\\ M=\frac{2(x-1)}{x-1}[/tex]
[tex]\displaystyle \sf \large\boxed{\sf \ M = 2 \ }\checkmark[/tex]
Copyright © 2025 ELIBRARY.TIPS - All rights reserved.
Lista de comentários
[tex]\displaystyle \sf M = \frac{2x^2+2x-4}{x^2-2x+1}-\frac{6x}{x^2-x} \ \ ; \text{Para x = 2023} \\\\\ \text{Vamos simplificar ao m\'aximo. Fatorando }: \\\\ M = \frac{2(x^2+x-2) }{(x-1)^2}-\frac{6x}{x(x-1)}\\\\\\ \frac{2(x^2+2x-x-2)}{(x-1)^2}-\frac{6}{x-1} \\\\\\ M = \frac{2\left[x(x+2)-(x+2)\right]}{(x-1)^2}-\frac{6}{x-1} \\\\\\ M = \frac{2(x-1)(x+2)}{(x-1)^2}-\frac{6}{x-1}\\\\\\ M=\frac{2(x+2)}{x-1}-\frac{6}{x-1}\\\\\ M=\frac{2x+4-6}{x-1}\\\\ M=\frac{2x-2}{x-1} \\\\\\ M=\frac{2(x-1)}{x-1}[/tex]
[tex]\displaystyle \sf \large\boxed{\sf \ M = 2 \ }\checkmark[/tex]