Articles
Register
Sign In
Search
chaimaaelbahlo
@chaimaaelbahlo
June 2021
1
19
Report
[tex] \lim_{ + \infty} \sqrt{ \frac{x}{x-1} } -x-1[/tex]
Please enter comments
Please enter your name.
Please enter the correct email address.
Agree to
terms and service
You must agree before submitting.
Send
Lista de comentários
editions
Bonsoir
√(x/(x-1))-x-1
= √(x) (1-x/√(x) - 1/√(x))
= √(x) (1-x/√(x) - 1/√(x))
= √(x) (1-√(x) - 1/√(x))
√(x) tend vers +infini
1/√(x) tend vers 0
-√(x) tend vers -infini
(1-√(x) - 1/√(x)) tend vers - infini
donc √(x) (1-x/√(x) - 1/√(x)) tend vers - infini
donc √(x/(x-1))-x-1 tend vers - infini
0 votes
Thanks 1
chaimaaelbahlo
Mercii
chaimaaelbahlo
et bonne soiree a vous
More Questions From This User
See All
chaimaaelbahlo
June 2021 | 0 Respostas
[tex] \lim_{x \to \ 1} \frac{x-1+ \sqrt{ x^{2}-1 } }{x-1} [/tex]Ecris ta question ici
Responda
×
Report "[tex] \lim_{ + \infty} \sqrt{ \frac{x}{x-1} } -x-1[/tex].... Pergunta de ideia de chaimaaelbahlo"
Your name
Email
Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint
Description
Helpful Links
Sobre nós
Política de Privacidade
Termos e Condições
direito autoral
Contate-Nos
Helpful Social
Get monthly updates
Submit
Copyright © 2025 ELIBRARY.TIPS - All rights reserved.
Lista de comentários
√(x/(x-1))-x-1
= √(x) (1-x/√(x) - 1/√(x))
= √(x) (1-x/√(x) - 1/√(x))
= √(x) (1-√(x) - 1/√(x))
√(x) tend vers +infini
1/√(x) tend vers 0
-√(x) tend vers -infini
(1-√(x) - 1/√(x)) tend vers - infini
donc √(x) (1-x/√(x) - 1/√(x)) tend vers - infini
donc √(x/(x-1))-x-1 tend vers - infini