[tex]( \frac{4}{15} - \frac{1}{6} ) \times \frac{20}{21} \\ [/tex] [tex] \frac{2}{5} + \frac{4}{15} \div 2 - \frac{1}{5 \\ } [/tex] Bonjour, est ce quelqu'un pourrait calculer ceci en indiquant les étapes intermédiaires et donner le résultat sous la forme d'une fraction irréductible
Lista de comentários
isisgeorges1
A = (4/15-1/6) x 20/21 A = (4x6/15x6-15/90) x 20/21 A = (24/90-15/90) x 20/21 A = ((24-15)/90) x 20/21 A = 9/90 x 20/21 A = (9x21)/(90x21) x (20x91)/(21x91) A = 181/1890 x 1820/1890 A = (181x1820)/1890 A = 329 420/1890 A = (2x2x5x13x7x181)/(2x5x3x3x3x7) A = (2x13x181)/(3x3x3) A = 4706/27
B = 2/5 + 4/15 : 2 - 1/5 B = 2/5 + 2/15 - 1/5 B = (3x2)/(3x5)+ 2/15 - (3x1)/(3x5) B = 6/15 + 2/15 - 3/15 B = (6 + 2 - 3)/15 B = (8 - 3)/15 B = 5/15
Lista de comentários
A = (4x6/15x6-15/90) x 20/21
A = (24/90-15/90) x 20/21
A = ((24-15)/90) x 20/21
A = 9/90 x 20/21
A = (9x21)/(90x21) x (20x91)/(21x91)
A = 181/1890 x 1820/1890
A = (181x1820)/1890
A = 329 420/1890
A = (2x2x5x13x7x181)/(2x5x3x3x3x7)
A = (2x13x181)/(3x3x3)
A = 4706/27
B = 2/5 + 4/15 : 2 - 1/5
B = 2/5 + 2/15 - 1/5
B = (3x2)/(3x5)+ 2/15 - (3x1)/(3x5)
B = 6/15 + 2/15 - 3/15
B = (6 + 2 - 3)/15
B = (8 - 3)/15
B = 5/15