Articles
Register
Sign In
Search
Maria999
@Maria999
April 2019
1
55
Report
Bonsoir! Pouvez-vous m'aider à résoudre ce problème s'il vous plaît? J'ai vraiment besoin d'aide ... :/
Trouver les formes canonique et factorisée
f(x) = x²+3x+2
f(x) = x²-x-20
f(x) = x²+6x+8
Please enter comments
Please enter your name.
Please enter the correct email address.
Agree to
terms and service
You must agree before submitting.
Send
Lista de comentários
esefiha
D'une manière générale : pour f(x) = ax²+bx+c
la forme canonique est f(x) = a[(x+b/2a)²-(b/2a)² +c]
donc
f(x) = x²+3x+2
a= 1 , b=3 et c= 2
b/2a = 3/2
forme canonique :
f(x) = (x+3/2)²-9/4 +2
f(x) = (x+3/2)²-9/4 +8/4
f(x) = (x+3/2)²-1/4
factorisation
f(x) = (x+3/2)²-1/4
f(x) = (x+3/2)²-(1/2)²
f(x) = (x+3/2-1/2)(x+3/2+1/2)
f(x) = (x+2/2)(x+4/2)
f(x) = (x+1)(x+2)
f(x) = x²-x-20
a=1, b=-1 et c=-20
b/2a = -1/2
forme canonique :
f(x) = (x-1/2)² - 1/4 -20
f(x) = (x-1/2)² - 1/4 - 80/4
f(x) = (x-1/2)² - 81/4
factorisation
f(x) = (x-1/2)² - 81/4
f(x) = (x-1/2)² - (9/2)²
f(x) = (x-1/2-9/2)(x-1/2+9/2)
f(x) = (x-1/2-9/2)(x-1/2+9/2)
f(x) = (x-10/2)(x+8/2)
f(x) = (x-5)(x+4)
f(x) = x²+6x+8
a= 1 ,b = 6 et c = 8
b/2a = 6/2 = 3
forme canonique :
f(x) = (x+3)² - 9 +8
f(x) = (x+3)² - 1
factorisation
f(x) = (x+3)² - 1²
f(x) = (x+3-1)(x+3+1)
f(x) = (x+2)(x+4)
2 votes
Thanks 1
More Questions From This User
See All
maria999
June 2021 | 0 Respostas
Responda
maria999
February 2021 | 0 Respostas
Responda
maria999
October 2020 | 0 Respostas
Responda
Maria999
April 2019 | 0 Respostas
Responda
Maria999
April 2019 | 0 Respostas
Responda
×
Report "Bonsoir! Pouvez-vous m'aider à résoudre ce problème s'il vous plaît? J'ai vraiment besoin d'aide .... Pergunta de ideia de Maria999"
Your name
Email
Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint
Description
Helpful Links
Sobre nós
Política de Privacidade
Termos e Condições
direito autoral
Contate-Nos
Helpful Social
Get monthly updates
Submit
Copyright © 2024 ELIBRARY.TIPS - All rights reserved.
Lista de comentários
la forme canonique est f(x) = a[(x+b/2a)²-(b/2a)² +c]
donc
f(x) = x²+3x+2
a= 1 , b=3 et c= 2
b/2a = 3/2
forme canonique :
f(x) = (x+3/2)²-9/4 +2
f(x) = (x+3/2)²-9/4 +8/4
f(x) = (x+3/2)²-1/4
factorisation
f(x) = (x+3/2)²-1/4
f(x) = (x+3/2)²-(1/2)²
f(x) = (x+3/2-1/2)(x+3/2+1/2)
f(x) = (x+2/2)(x+4/2)
f(x) = (x+1)(x+2)
f(x) = x²-x-20
a=1, b=-1 et c=-20
b/2a = -1/2
forme canonique :
f(x) = (x-1/2)² - 1/4 -20
f(x) = (x-1/2)² - 1/4 - 80/4
f(x) = (x-1/2)² - 81/4
factorisation
f(x) = (x-1/2)² - 81/4
f(x) = (x-1/2)² - (9/2)²
f(x) = (x-1/2-9/2)(x-1/2+9/2)
f(x) = (x-1/2-9/2)(x-1/2+9/2)
f(x) = (x-10/2)(x+8/2)
f(x) = (x-5)(x+4)
f(x) = x²+6x+8
a= 1 ,b = 6 et c = 8
b/2a = 6/2 = 3
forme canonique :
f(x) = (x+3)² - 9 +8
f(x) = (x+3)² - 1
factorisation
f(x) = (x+3)² - 1²
f(x) = (x+3-1)(x+3+1)
f(x) = (x+2)(x+4)