Articles
Register
Sign In
Search
JulieLfb
@JulieLfb
April 2019
1
25
Report
URGENT. Voici un devoir que les identités remarquable, la factorisation et les carré. Bonne chance & bonne année ! ;* <3
Please enter comments
Please enter your name.
Please enter the correct email address.
Agree to
terms and service
You must agree before submitting.
Send
Lista de comentários
danielwenin
Verified answer
1.
A = 9x² + 6x + 1 + 4x² -28x + 49 = 13x² - 22x + 50
B = 4/9x² - 16/15x + 16/25
C = 4x² - 49 - x² + 4x - 4 = 3x² + 4x - 53
2.
D = x(5x-2)
E = (3x - 1)²
F = (x-7)(x+1 - 5) = (x-7)(x-4)
G = (2x-3)(2x+3)
3.
1. H = 18x² + 6x - 27x - 9 - 4x² + 12x - 9 = 14x² - 9x - 18
2.H(-2) = -5x-21 - 49 = -105 - 49 = 56
H(3/2) = 3(3-3)(21/2 + 6) = 0
3. 6x - 9 = 3(2x - 3)
H = 3(2x-3)(3x+1) - (2x-3)² = (2x-3)(9x + 3 - 2x + 3) = 3(2x-3)(7x+6)
4. 3(2x-3)(7x+6) = 0 => x = 3/2 ou x = -6/7
ex4.
1. A1 = (2x+1)(3x-9)
2. A2 = (3x-7)² - 4
3. A1 - A2 = 6x² - 18x + 3x - 9 - 9x² + 42x - 49 - 4 = 0 => -3x² +27x - 62 = 0
=> x² - 9x + 62/3 = 0 => x² - 9x + 81/4 + 5/12= 0 => (x - 9/2)² + 5/12 = 0 ce qui n'est pas possible
1 votes
Thanks 2
×
Report "URGENT. Voici un devoir que les identités remarquable, la factorisation et les carré. Bonne chance &.... Pergunta de ideia de JulieLfb"
Your name
Email
Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint
Description
Helpful Links
Sobre nós
Política de Privacidade
Termos e Condições
direito autoral
Contate-Nos
Helpful Social
Get monthly updates
Submit
Copyright © 2025 ELIBRARY.TIPS - All rights reserved.
Lista de comentários
Verified answer
1.A = 9x² + 6x + 1 + 4x² -28x + 49 = 13x² - 22x + 50
B = 4/9x² - 16/15x + 16/25
C = 4x² - 49 - x² + 4x - 4 = 3x² + 4x - 53
2.
D = x(5x-2)
E = (3x - 1)²
F = (x-7)(x+1 - 5) = (x-7)(x-4)
G = (2x-3)(2x+3)
3.
1. H = 18x² + 6x - 27x - 9 - 4x² + 12x - 9 = 14x² - 9x - 18
2.H(-2) = -5x-21 - 49 = -105 - 49 = 56
H(3/2) = 3(3-3)(21/2 + 6) = 0
3. 6x - 9 = 3(2x - 3)
H = 3(2x-3)(3x+1) - (2x-3)² = (2x-3)(9x + 3 - 2x + 3) = 3(2x-3)(7x+6)
4. 3(2x-3)(7x+6) = 0 => x = 3/2 ou x = -6/7
ex4.
1. A1 = (2x+1)(3x-9)
2. A2 = (3x-7)² - 4
3. A1 - A2 = 6x² - 18x + 3x - 9 - 9x² + 42x - 49 - 4 = 0 => -3x² +27x - 62 = 0
=> x² - 9x + 62/3 = 0 => x² - 9x + 81/4 + 5/12= 0 => (x - 9/2)² + 5/12 = 0 ce qui n'est pas possible