Resposta:
[tex] \frac{4 \times (x + 1)}{x - 1} - \frac{2x}{x - 5} = 2 \\ \\ \frac{4x + 4}{x - 1} - \frac{2x}{x - 5} = 2 \\ \\ \frac{(x - 5) \times (4x + 4) - 2x \times (x - 1)}{(x - 1) \times (x - 5)} = 2 \\ \\ \frac{4 {x}^{2} + 4x - 20x - 20 - 2 {x}^{2} + 2x }{(x - 1) \times(x - 5) } = 2 \\ \\ \frac{2 {x}^{2} - 14x - 20}{ (x - 1) \times (x - 5)} = 2 \\ \\ 2 {x}^{2} - 14x - 20 = 2 \times (x - 1) \times x - 5) \\ 2 {x }^{2} - 14x - 20 = (2x - 2) \times (x - 5) \\ 2 {x}^{2} - 14x - 20 = 2 {x}^{2} - 10x - 2x + 10 \\ - 14x - 20 = - 12x + 10 \\ - 14x - 20 + 12x = 10 \\ - 14x + 12x = 10 + 20 \\ - 2x = 30 \div ( - 2) \\ x = - 15[/tex]
Copyright © 2025 ELIBRARY.TIPS - All rights reserved.
Lista de comentários
Resposta:
[tex] \frac{4 \times (x + 1)}{x - 1} - \frac{2x}{x - 5} = 2 \\ \\ \frac{4x + 4}{x - 1} - \frac{2x}{x - 5} = 2 \\ \\ \frac{(x - 5) \times (4x + 4) - 2x \times (x - 1)}{(x - 1) \times (x - 5)} = 2 \\ \\ \frac{4 {x}^{2} + 4x - 20x - 20 - 2 {x}^{2} + 2x }{(x - 1) \times(x - 5) } = 2 \\ \\ \frac{2 {x}^{2} - 14x - 20}{ (x - 1) \times (x - 5)} = 2 \\ \\ 2 {x}^{2} - 14x - 20 = 2 \times (x - 1) \times x - 5) \\ 2 {x }^{2} - 14x - 20 = (2x - 2) \times (x - 5) \\ 2 {x}^{2} - 14x - 20 = 2 {x}^{2} - 10x - 2x + 10 \\ - 14x - 20 = - 12x + 10 \\ - 14x - 20 + 12x = 10 \\ - 14x + 12x = 10 + 20 \\ - 2x = 30 \div ( - 2) \\ x = - 15[/tex]