RESPOSTAS CORRETA É A LETRA B
[tex]\displaystyle \sf \int \sqrt{x^2+1}dx \ \ ;\ \ x= tg(u) \to dx = sec^2(u)du \\\\\ \int \sqrt{tg^2(u)+1}\left(sec^2(u)du\right) \to \int\sqrt{sec^2(u)}\left(sec^2(u)du\right) \\\\\\ \int sec(u)\cdot sec^2(u)du =\int sec^3(u)du\to \\\\ \int sec(u)\cdot sec^2(u)du \to \int p\ dv = p\cdot v-\int v\ dp \\\\\ \text{Fa\c camos}:\\\\ p=sec(u) \to dp = sec(u)tg(u)du \\\\ dv = sec^2(u)du \to v = tg(u) \\\\ Da{\'i}}: \\\\ \int sec^3(u)du = sec(u)tg(u)-\int tg(u)sec(u)tg(u)du[/tex]
[tex]\displaystyle \sf \int sec^3(u)du = sec(u)tg(u)-\int tg^2(u)sec(u)du \\\\ \int sec^3(u)du = sec(u)tg(u)-\int \left(sec^2(u)-1\right)sec(u)du \\\\ \int sec^3(u)du = sec(u)tg(u)-\int sec^3(u)du+\int sec(u)du \\\\ 2\int sec^3(u)du = sec(u)tg(u)+\int sec(u)du \\\\\\\ \text{sabemos que} : \\\\ \int sec(u)du = \ln|sec(u)+tg(u)| +C \\\\\ Assim: \\\\ 2\int sec^3(u)du = sec(u)tg(u)+\ln|sec(u)+tg(u)| +C \\\\ \int sec^3(u)du = \frac{1}{2}sec(u)tg(u)+\frac{1}{2}\ln|sec(u)+tg(u)| +C[/tex]
[tex]\displaystyle \sf \text{desfazendo a substitui\c c\~ao} : \\\\ x = tg(u) \to sec^2(u) = tg^2(u)+1 \to sec(u) = \sqrt{x^2+1} \\\\\ Portanto: \\\\ \large\boxed{\sf \ \int \sqrt{x^2+1}\ dx = \frac{1}{2}\sqrt{x^2+1}\cdot x+\frac{1}{2}\ln\left|\sqrt{x^2+1}+x\right| +C \ }\checkmark[/tex]
Copyright © 2024 ELIBRARY.TIPS - All rights reserved.
Lista de comentários
RESPOSTAS CORRETA É A LETRA B
[tex]\displaystyle \sf \int \sqrt{x^2+1}dx \ \ ;\ \ x= tg(u) \to dx = sec^2(u)du \\\\\ \int \sqrt{tg^2(u)+1}\left(sec^2(u)du\right) \to \int\sqrt{sec^2(u)}\left(sec^2(u)du\right) \\\\\\ \int sec(u)\cdot sec^2(u)du =\int sec^3(u)du\to \\\\ \int sec(u)\cdot sec^2(u)du \to \int p\ dv = p\cdot v-\int v\ dp \\\\\ \text{Fa\c camos}:\\\\ p=sec(u) \to dp = sec(u)tg(u)du \\\\ dv = sec^2(u)du \to v = tg(u) \\\\ Da{\'i}}: \\\\ \int sec^3(u)du = sec(u)tg(u)-\int tg(u)sec(u)tg(u)du[/tex]
[tex]\displaystyle \sf \int sec^3(u)du = sec(u)tg(u)-\int tg^2(u)sec(u)du \\\\ \int sec^3(u)du = sec(u)tg(u)-\int \left(sec^2(u)-1\right)sec(u)du \\\\ \int sec^3(u)du = sec(u)tg(u)-\int sec^3(u)du+\int sec(u)du \\\\ 2\int sec^3(u)du = sec(u)tg(u)+\int sec(u)du \\\\\\\ \text{sabemos que} : \\\\ \int sec(u)du = \ln|sec(u)+tg(u)| +C \\\\\ Assim: \\\\ 2\int sec^3(u)du = sec(u)tg(u)+\ln|sec(u)+tg(u)| +C \\\\ \int sec^3(u)du = \frac{1}{2}sec(u)tg(u)+\frac{1}{2}\ln|sec(u)+tg(u)| +C[/tex]
[tex]\displaystyle \sf \text{desfazendo a substitui\c c\~ao} : \\\\ x = tg(u) \to sec^2(u) = tg^2(u)+1 \to sec(u) = \sqrt{x^2+1} \\\\\ Portanto: \\\\ \large\boxed{\sf \ \int \sqrt{x^2+1}\ dx = \frac{1}{2}\sqrt{x^2+1}\cdot x+\frac{1}{2}\ln\left|\sqrt{x^2+1}+x\right| +C \ }\checkmark[/tex]