Articles
Register
Sign In
Search
Dareen
@Dareen
April 2019
1
71
Report
J'ai du mal sur une primitive
2/x - ln(x)/x
merci d'avance
Please enter comments
Please enter your name.
Please enter the correct email address.
Agree to
terms and service
You must agree before submitting.
Send
Lista de comentários
anylor
Méthode
2 * 1/x - ln(x) * 1/x
la primitive de 1/x c'est ln(x)
donc primitive de 2/x = 2ln(x)
pour ln(x) / x = ln * 1/x
forme u *u' -> primitive u (n+1) / (n+1)
u = lnx
u' =1/x
donc pour la primitive, on utilise la formule
u ^(n+1) / (n+1)
( on a posé u =lnx)
(lnx)^ (1+1) / 2
en définitive
2lnx -( lnx) ² / 2
1 votes
Thanks 0
Dareen
c'était ça merci
More Questions From This User
See All
Dareen
February 2021 | 0 Respostas
Responda
×
Report "J'ai du mal sur une primitive 2/x - ln(x)/x merci d'avance.... Pergunta de ideia de Dareen"
Your name
Email
Reason
-Select Reason-
Pornographic
Defamatory
Illegal/Unlawful
Spam
Other Terms Of Service Violation
File a copyright complaint
Description
Helpful Links
Sobre nós
Política de Privacidade
Termos e Condições
direito autoral
Contate-Nos
Helpful Social
Get monthly updates
Submit
Copyright © 2024 ELIBRARY.TIPS - All rights reserved.
Lista de comentários
2 * 1/x - ln(x) * 1/x
la primitive de 1/x c'est ln(x)
donc primitive de 2/x = 2ln(x)
pour ln(x) / x = ln * 1/x
forme u *u' -> primitive u (n+1) / (n+1)
u = lnx
u' =1/x
donc pour la primitive, on utilise la formule
u ^(n+1) / (n+1)
( on a posé u =lnx)
(lnx)^ (1+1) / 2
en définitive
2lnx -( lnx) ² / 2